堆排序+TopK问题——“数据结构与算法”

这篇具有很好参考价值的文章主要介绍了堆排序+TopK问题——“数据结构与算法”。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

各位CSDN的uu们你们好呀,好久不见,停更了很长一段时间吧,最近小雅兰会开始慢慢更新起来的,下面,就进入小雅兰今天的分享的知识点吧,让我们一起进入堆的世界!!!


堆排序——(1)

heap.h的内容:

#pragma once
#include<stdio.h>
#include<stdlib.h>
#include<assert.h>
#include<stdbool.h>
typedef int HeapDataType;
typedef struct Heap
{
	HeapDataType* a;
	int size;
	int capacity;
}Heap;
//堆的初始化
void HeapInit(Heap* php);
//堆的销毁
void HeapDestroy(Heap* php);
//插入数据
void HeapPush(Heap* php, HeapDataType x);
//向上调整算法
void AdjustUp(HeapDataType* a, int child);
//删除堆顶数据
void HeapPop(Heap* php);
//向下调整算法
void AdjustDown(int* a, int n, int parent);
//判空
bool HeapEmpty(Heap* php);
//堆顶元素
HeapDataType HeapTop(Heap* php);
//元素个数
int HeapSize(Heap* php);

heap.c的内容:

#include"heap.h"
//堆的初始化
void HeapInit(Heap* php)
{
	assert(php);
	php->a = NULL;
	php->size = 0;
	php->capacity = 0;
}
//堆的销毁
void HeapDestroy(Heap* php)
{
	assert(php);
	free(php->a);
	php->a = NULL;
	php->size = 0;
	php->capacity = 0;
}
//交换数据
void Swap(HeapDataType* p1, HeapDataType* p2)
{
	HeapDataType tmp = *p1;
	*p1 = *p2;
	*p2 = tmp;
}
//向上调整算法
void AdjustUp(HeapDataType* a, int child)
{
	int parent = (child - 1) / 2;
	while (child > 0)
	{
		//小根堆
		if (a[child] < a[parent])
		{
			Swap(&a[child], &a[parent]);
			child = parent;
			parent = (child - 1) / 2;
		}
		else
		{
			break;
		}
	}
}
//插入数据
void HeapPush(Heap* php, HeapDataType x)
{
	assert(php);
	//扩容
	if (php->size == php->capacity)
	{
		int newcapacity = php->capacity == 0 ? 4 : php->capacity * 2;
		HeapDataType* tmp = (HeapDataType*)realloc(php->a, newcapacity * sizeof(HeapDataType));
		if (tmp == NULL)
		{
			perror("realloc fail");
			return;
		}
		php->a = tmp;
		php->capacity = newcapacity;
	}
	php->a[php->size] = x;
	php->size++;
	AdjustUp(php->a, php->size - 1);
}
//向下调整算法
//这边写int* 而不写HeapDataType* 是有意为之的 为以后堆排序作准备
void AdjustDown(int* a, int n, int parent)
{
	//默认左孩子小
	int child = parent * 2 + 1;
	while (child < n)//孩子在数组范围内
	{
		//选出左右孩子中小/大的那一个
		//有可能假设错了
		//左孩子不存在,一定没有右孩子——完全二叉树
		//左孩子存在,有可能没有右孩子
		if ( child + 1 < n && a[child + 1] < a[child])
		//	右孩子存在			右孩子<左孩子
		//不能这么写 if (la[child + 1] < a[chid] && child + 1 < n )
		//这样写会有越界的风险 因为是先访问了数组中的元素 再去比较右孩子是否存在
		{
			++child;
		}
		//child就是小的那个孩子
		//不关心到底是左孩子还是右孩子 小根堆:和小的孩子比较就可以了
		if (a[child] < a[parent])
		{
			Swap(&a[child], &a[parent]);
			child = parent;
			child = parent * 2 + 1;//默认又算的是左孩子
		}
		else
		{
			break;
		}

	}
}
//判空
bool HeapEmpty(Heap* php)
{
	assert(php);
	if (php->size == 0)
	{
		return true;
	}
	else
	{
		return false;
	}
}
//删除堆顶数据
void HeapPop(Heap* php)
{
	assert(php);
	assert(!HeapEmpty(php));
	Swap(&php->a[0], &php->a[php->size - 1]);
	php->size--;
	AdjustDown(php->a, php->size, 0);
}
//堆顶元素
HeapDataType HeapTop(Heap* php)
{
	assert(php);
	assert(!HeapEmpty(php));
	return php->a[0];
}
//元素个数
int HeapSize(Heap* php)
{
	assert(php);
	return php->size;
}

test.c的内容:

void HeapSort(int* a, int n)
{
	Heap hp;
	HeapInit(&hp);
	int i = 0;
	for (i = 0; i < n; i++)
	{
		HeapPush(&hp, a[i]);
	}
	while (!HeapEmpty(&hp))
	{
		int top = HeapTop(&hp);
		a[i++] = top;
		HeapPop(&hp);
	}
	HeapDestroy(&hp);
}
int main()
{
	int a[] = { 7,8,3,5,1,9,5,4 };
	int sz = sizeof(a) / sizeof(a[0]);
	HeapSort(a, sz);
	return 0;
}

这样的堆排序其实也是可以的

但是有弊端!!!

第一个:得先有一个堆,太麻烦了

第二个:空间复杂度太高了,还有拷贝数据

堆排序——(2)

首先还是得建堆!!!

第一种方法:向上调整建堆

//建堆——向上调整建堆
int i = 0;
for (i = 1; i < n; i++)
{
	AdjustUp(a, i);
}

如果升序建小堆:

堆排序+TopK问题——“数据结构与算法”,数据结构与算法,java,数学建模,开发语言,算法,数据结构

 堆排序+TopK问题——“数据结构与算法”,数据结构与算法,java,数学建模,开发语言,算法,数据结构

所以升序要建大堆 

堆排序+TopK问题——“数据结构与算法”,数据结构与算法,java,数学建模,开发语言,算法,数据结构

堆排序+TopK问题——“数据结构与算法”,数据结构与算法,java,数学建模,开发语言,算法,数据结构

这边就是说排降序要建小堆 

void HeapSort(int* a, int n)
{
	//建堆——向上调整建堆
	int i = 0;
	for (i = 1; i < n; i++)
	{
		AdjustUp(a, i);
	}
	//升序——建大堆
	//降序——建小堆
	int end = n - 1;
	while (end > 0)
	{
		Swap(&a[0], &a[end]);
		AdjustDown(a, end, 0);
		--end;
	}
}

 堆排序+TopK问题——“数据结构与算法”,数据结构与算法,java,数学建模,开发语言,算法,数据结构

第二种方法:向下调整建堆 堆排序+TopK问题——“数据结构与算法”,数据结构与算法,java,数学建模,开发语言,算法,数据结构

//建堆——向下调整建堆
int i = 0;
for (i = (n - 1 - 1) / 2; i >= 0; i--)
{
	AdjustDown(a, n, i);
}

堆排序+TopK问题——“数据结构与算法”,数据结构与算法,java,数学建模,开发语言,算法,数据结构

完整堆排序代码:

void HeapSort(int* a, int n)
{
    //建堆——向下调整建堆
	int i = 0;
	for (i = (n - 1 - 1) / 2; i >= 0; i--)
	{
		AdjustDown(a, n, i);
	}
	//升序——建大堆
	//降序——建小堆
	int end = n - 1;
	while (end > 0)
	{
		Swap(&a[0], &a[end]);
		AdjustDown(a, end, 0);
		--end;
	}
}

向下调整的时间复杂度 堆排序+TopK问题——“数据结构与算法”,数据结构与算法,java,数学建模,开发语言,算法,数据结构

 结点多,向下的调整次数少,结点少,向下的调整次数多 

 最后一层不需要调整,所以从倒数第二层开始计算

堆排序+TopK问题——“数据结构与算法”,数据结构与算法,java,数学建模,开发语言,算法,数据结构

这里运用到了一个常见的数学方法——错位相减法

堆排序+TopK问题——“数据结构与算法”,数据结构与算法,java,数学建模,开发语言,算法,数据结构

堆排序+TopK问题——“数据结构与算法”,数据结构与算法,java,数学建模,开发语言,算法,数据结构

向上调整的时间复杂度

堆排序+TopK问题——“数据结构与算法”,数据结构与算法,java,数学建模,开发语言,算法,数据结构

结点多,向上调整的次数多,结点少,向上调整的次数少

所以,向上调整建堆的效率和向下调整建堆的效率相比,向上调整要低得多

 堆排序+TopK问题——“数据结构与算法”,数据结构与算法,java,数学建模,开发语言,算法,数据结构

 堆排序+TopK问题——“数据结构与算法”,数据结构与算法,java,数学建模,开发语言,算法,数据结构

堆排序+TopK问题——“数据结构与算法”,数据结构与算法,java,数学建模,开发语言,算法,数据结构


TopK问题

 TOP-K问题:即求数据结合中前K个最大的元素或者最小的元素,一般情况下数据量都比较大。

比如:专业前10名、世界500强、富豪榜、游戏中前100的活跃玩家等。

对于Top-K问题,能想到的最简单直接的方式就是排序,但是:如果数据量非常大,排序就不太可取了(可能 数据都不能一下子全部加载到内存中)。最佳的方式就是用堆来解决,基本思路如下:

用数据集合中前K个元素来建堆

  • 前k个最大的元素,则建小堆
  • 前k个最小的元素,则建大堆 

用剩余的N-K个元素依次与堆顶元素来比较,不满足则替换堆顶元素

        将剩余N-K个元素依次与堆顶元素比完之后,堆中剩余的K个元素就是所求的前K个最小或者最大的元素。

堆排序+TopK问题——“数据结构与算法”,数据结构与算法,java,数学建模,开发语言,算法,数据结构

数据多的话,数据存放在磁盘文件中

堆排序+TopK问题——“数据结构与算法”,数据结构与算法,java,数学建模,开发语言,算法,数据结构

堆排序+TopK问题——“数据结构与算法”,数据结构与算法,java,数学建模,开发语言,算法,数据结构

void CreateNDate()
{
	// 造数据
	int n = 10000;
	srand(time(0));
	const char* file = "data.txt";
	FILE* fin = fopen(file, "w");
	if (fin == NULL)
	{
		perror("fopen error");
		return;
	}
	for (size_t i = 0; i < n; ++i)
	{
		int x = rand() % 1000000;
		fprintf(fin, "%d\n", x);
	}
	fclose(fin);
}
void PrintTopK(int k)
{
	const char* file = "data.txt";
	FILE* fout = fopen(file, "r");
	if (fout == NULL)
	{
		perror("fopen error");
		return;
	}
	int* kminheap = (int*)malloc(sizeof(int) * k);
	if (kminheap == NULL)
	{
		perror("malloc error");
		return;
	}
	for (int i = 0; i < k; i++)
	{
		fscanf(fout, "%d", &kminheap[i]);
	}
	// 建小堆
	for (int i = (k - 1 - 1) / 2; i >= 0; i--)
	{
		AdjustDown(kminheap, k, i);
	}
	int val = 0;
	while (!feof(fout))
	{
		fscanf(fout, "%d", &val);
		if (val > kminheap[0])
		{
			kminheap[0] = val;
			AdjustDown(kminheap, k, 0);
		}
	}
	for (int i = 0; i < k; i++)
	{
		printf("%d ", kminheap[i]);
	}
	printf("\n");
}

好啦,小雅兰今天的学习内容就到这里啦,太摆烂了,还是要继续加油呀!!!

堆排序+TopK问题——“数据结构与算法”,数据结构与算法,java,数学建模,开发语言,算法,数据结构文章来源地址https://www.toymoban.com/news/detail-538320.html

到了这里,关于堆排序+TopK问题——“数据结构与算法”的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【初阶数据结构】——堆排序和TopK问题

     ========================================================================= 个人主页 代码仓库 C语言专栏 初阶数据结构专栏 Linux专栏  ========================================================================= 接上篇二叉树和堆的引入 =========================================================================  目录 前言 建堆 插

    2024年02月07日
    浏览(41)
  • 玩转堆排序以及Topk问题——【数据结构】

    W...Y的主页 😊 代码仓库分享  💕 目录 堆排序  建堆  建堆的时间复杂度 Topk问题 学习了二叉树以及堆,今天我们来学习一下什么是堆排序以及经典二叉树问题——topk问题。 在学习开始我们先来回顾一下上篇博客中我们提到的堆,在实现堆时我们要进行向上调整或向下调

    2024年02月07日
    浏览(35)
  • 数据结构:堆的应用(堆排序和topk问题)

    个人主页 : 个人主页 个人专栏 : 《数据结构》 《C语言》 堆排序即是 先将数据建堆,再利用堆删除的思想来排序。 将待排序数组建堆 将堆顶数据与数组尾部数据交换 调整新的堆顶数据,使其保证堆的结构不变 重复2,3步直到堆中没有数据结束。 降序 建小堆 (父节点 小于

    2024年02月13日
    浏览(38)
  • 【数据结构之二叉树简介·顺序存储·应用:堆·堆排序·TOPK问题】

    ​ 🕺作者: 迷茫的启明星 😘欢迎关注:👍点赞🙌收藏✍️留言 🎃相关文章 【数据结构从0到1之树的初识】 【数据结构】带你学会二叉树的链式存储的前中后序遍历,遍历推导及利用队列实现二叉树的层次遍历。 🏇家人们,码字不易,你的👍点赞🙌收藏❤️关注对我

    2024年02月01日
    浏览(35)
  • 【数据结构】---TopK问题

    本文提供用建堆来解决TopK问题的一个思路 N个数中找出最大的或者最小的前k个 假设现从N个数中找最小的前k个 ①堆排序, 时间复杂度O(N*logN),这N个数排一下序,前k个数就是需要的 ②建堆N个数的小堆 ,HeapPop k-1 次,就选出来了,因为小堆最小的在堆顶,选出一次后,再删除

    2024年02月12日
    浏览(45)
  • 【数据结构】——解决topk问题

    前言:我们前面已经学习了小堆并且也实现了小堆,那么我们如果要从多个数据里选出最大的几个数据该怎么办呢,这节课我们就来解决这个问题。我们就用建小堆的方法来解决。 首先我们来看到这个方法的时间复杂度,我们先取前k个数据建立一个小堆,后面插入的数据依

    2024年02月04日
    浏览(40)
  • 【数据结构】【堆】 堆排,TOPK问题

    堆排序,就是先将数据构建成堆,根据需要构建大堆或者小堆。 如果要排降序,就构建小堆。 如果要排升序,就构建大堆。 我们 以降序为例 : 在构建好小堆后,堆顶的数据就是最小的。 我们将堆顶数据与最后一个数据进行交换,然后把堆的最后一个位置排除在外(即它不

    2024年02月07日
    浏览(35)
  • 【数据结构】堆的应用-----TopK问题

    目录 一、前言 二、Top-k问题   💦解法一:暴力排序 💦解法二:建立N个数的堆 💦解法三:建立K个数的堆(最优解) 三、完整代码和视图  四、共勉 在之前的文章中,已经详细的讲解了二叉树、堆、堆排序。那么关于堆还有一个比较有意思的题,就是TopK问题。 如果对堆

    2024年02月07日
    浏览(46)
  • 数据结构——堆的应用 Topk问题

    hello hello~ ,这里是大耳朵土土垚~💖💖 ,欢迎大家点赞🥳🥳关注💥💥收藏🌹🌹🌹 💥 个人主页:大耳朵土土垚的博客 💥 所属专栏:数据结构学习笔记 、C语言系列函数实现 💥对于数据结构顺序表、链表、堆有疑问的都可以在上面数据结构的专栏进行学习哦~ 有问题可

    2024年03月14日
    浏览(58)
  • 数据结构之树(Topk问题, 链式二叉树)

    取N个数中最大(小)的前k个值,N远大于k 这道题可以用堆的方法来解决,首先取这N个数的前k个值,用它们建堆 时间复杂度O(k) 之后将剩余的N-k个数据依次与堆顶数据进行比较,如果比堆顶数据大,则将堆顶数据覆盖后向下调整 时间复杂度(N-k)*log(N) 总共的时间复杂度为O(N*log(N)) 用数组

    2024年03月15日
    浏览(41)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包