pytorch如何查看tensor和model在哪个GPU上以及指定GPU设备

这篇具有很好参考价值的文章主要介绍了pytorch如何查看tensor和model在哪个GPU上以及指定GPU设备。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1. 查看tensor所在的设备:
data = data.cuda()#将数据转移到gpu上
 
print(data.device)  # 输出:cuda:0
 
data = data.cpu()#将数据转移到cpu上
 
print(data.device)  # 输出:cpu
2. 查看model所在的设备
model = model.cuda()#将模型转移到gpu上
 
print(next(model.parameters()).device)  # 输出:cuda:0
 
model = model.cpu()#将模型转移到cpu上
 
print(next(model.parameters()).device)  # 输出:cpu
3. Pytorch中将模型和张量加载到GPU的常用方法有两种。

方式1:

# 如果GPU可用,将模型和张量加载到GPU上
if torch.cuda.is_available():
    model = model.cuda()
    x = x.cuda()
    y = y.cuda()

方式2:

# 分配到的GPU或CPU
device=torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# 将模型加到GPU
model=model.to(device)
# 将张量加到GPU
x=x.to(device)
y=y.to(device)
4. 指定GPU代码
# 代码1:
torch.cuda.set_device(1)

# 代码2:
device = torch.device("cuda:1")

# 代码3:(官方推荐使用),
os.environ["CUDA_VISIBLE_DEVICES"] = '1'

(如果你想同时调用两块GPU的话)
os.environ["CUDA_VISIBLE_DEVICES"] = '1,2'

参考链接:PyTorch 中 选择指定的 GPU

注意需要将指定GPU代码放在程序段最开始的部位,如下图所示:
查看tensor的device,Pytorch基础,pytorch,人工智能,python,GPU文章来源地址https://www.toymoban.com/news/detail-538477.html

5.查看gpu个数
torch.cuda.device_count()

到了这里,关于pytorch如何查看tensor和model在哪个GPU上以及指定GPU设备的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Linux和Windows系统下:安装Anaconda、Paddle、tensorflow、pytorch,GPU[cuda、cudnn]、CPU安装教学,以及查看CPU、GPU内存使用情况

    Anaconda安装:Anaconda是一个开源的Python发行版本,其包含了conda、Python等180多个科学包及其依赖项。使用Anaconda可以通过创建多个独立的Python环境,避免用户的Python环境安装太多不同版本依赖导致冲突。 Anaconda 是一个免费开源的 Python 和 R 语言的发行版本,用于计算科学,Anac

    2024年02月04日
    浏览(61)
  • pytorch指定使用多个GPU

    方式一:指定使用所有GPU 方式二:结合系统环境变量使用特定的GPU 方式三:直接指定特定的GPU 以上所有情况中,后面使用的数据都要映射到对应的GPU设备。 如果x,y是数据:

    2024年02月12日
    浏览(29)
  • 深度学习--PyTorch定义Tensor以及索引和切片

    ​这些方法只是开辟了空间,所附的初始值(非常大,非常小,0),后面还需要我们进行数据的存入。 torch.empty():返回一个没有初始化的Tensor,默认是FloatTensor类型。 torch.FloatTensor():返回没有初始化的FloatTensor。 torch.IntTensor():返回没有初始化的IntTensor。 随机均匀分布:

    2023年04月20日
    浏览(46)
  • pytorch 查看 GPU 型号

    返回

    2024年04月15日
    浏览(29)
  • Pytorch查看GPU信息

    1、查看cuda是否可用:torch.cuda.is_available() 2、查看GPU数量:torch.cuda.device_count() 3、查看GPU型号,设备索引默认从0开始:torch.cuda.get_device_name(0) 4、查看当前设备索引:torch.cuda.current_device()

    2024年02月09日
    浏览(46)
  • pytorch中的tensor实现数据降维以及通道数转换

            首先导入torch包,利用torch.narrow()函数实现数据通道数转换,具体实例见下图         利用torch.rand(5,6)随机生成一个5X6的二维矩阵,利用torch.narrow(x,dim,start,length)进行通道数转化,narrow()函数里第一个参数是你需要转换的原始数据,必须是tensor形式。第二个变量

    2024年02月17日
    浏览(44)
  • 在GPU上运行pytorch程序(指定单/多显卡)

    1. 使用CUDA_VISIBLE_DEVICES 2. 使用cuda()和torch.cuda.set_device() 3. 使用device 4. 使用torch.nn.DataParallel torch.cuda常用指令 https://blog.csdn.net/qq_43307074/article/details/127628498?spm=1001.2014.3001.5501 方法1和方法2可以同时使用,比如在运行代码时使用: 而在代码内部又指定: 那么model会在GPU3上运行。

    2024年01月21日
    浏览(35)
  • pytorch 测量模型运行时间,GPU时间和CPU时间,model.eval()介绍

    time.time() time.perf_counter() time.process_time() time.time() 和time.perf_counter() 包括sleep()time 可以用作一般的时间测量,time.perf_counter()精度更高一些 time.process_time()当前进程的系统和用户CPU时间总和的值 测试代码: 测试结果: 更详细解释参考 Python3.7中time模块的time()、perf_counter()和proce

    2024年02月06日
    浏览(44)
  • 在linux中查看运行指定进程资源占用(cpu+gpu)

    在运行程序时有时候会需要查看资源占用,以方便部署在其他服务器上时进行参考。以下是总结了我在linux上查找程序进程资源的两种方法(cpu和gpu都有)。 如果进程较多,输入 ps -ef | grep + 指令 进行搜索。如果运行的是python程序,可以输入 ps -ef | grep python3 比如我想

    2024年02月04日
    浏览(53)
  • Linux中使用nvidia-smi命令实时查看指定GPU使用情况

    参考:使用watch和nvidia-smi命令实时查看GPU使用、显存占用情况 nvidia-smi :可以查看显卡的型号、驱动版本、显卡目前温度、显存已使用及剩余、正使用显卡的所有进程及占用显存等信息; watch -n 5 nvidia-smi :5代表每隔5秒刷新一次GPU使用情况,同理,每隔1秒刷新,则使用:w

    2024年01月22日
    浏览(53)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包