再见,Guava!再见,Ehcache!

这篇具有很好参考价值的文章主要介绍了再见,Guava!再见,Ehcache!。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、Caffeine介绍

1、缓存介绍

缓存(Cache)在代码世界中无处不在。从底层的CPU多级缓存,到客户端的页面缓存,处处都存在着缓存的身影。缓存从本质上来说,是一种空间换时间的手段,通过对数据进行一定的空间安排,使得下次进行数据访问时起到加速的效果。

就Java而言,其常用的缓存解决方案有很多,例如数据库缓存框架EhCache,分布式缓存Memcached等,这些缓存方案实际上都是为了提升吞吐效率,避免持久层压力过大。

对于常见缓存类型而言,可以分为本地缓存以及分布式缓存两种,Caffeine就是一种优秀的本地缓存,而Redis可以用来做分布式缓存

2、Caffeine介绍

Caffeine官方:

https://github.com/ben-manes/caffeine

Caffeine是基于Java 1.8的高性能本地缓存库,由Guava改进而来,而且在Spring5开始的默认缓存实现就将Caffeine代替原来的Google Guava,官方说明指出,其缓存命中率已经接近最优值。实际上Caffeine这样的本地缓存和ConcurrentMap很像,即支持并发,并且支持O(1)时间复杂度的数据存取。二者的主要区别在于:

  • ConcurrentMap将存储所有存入的数据,直到你显式将其移除;
  • Caffeine将通过给定的配置,自动移除“不常用”的数据,以保持内存的合理占用。

因此,一种更好的理解方式是:Cache是一种带有存储和移除策略的Map。

再见,Guava!再见,Ehcache!

二、Caffeine基础

使用Caffeine,需要在工程中引入如下依赖

<dependency>
    <groupId>com.github.ben-manes.caffeine</groupId>
    <artifactId>caffeine</artifactId>
    <!--https://mvnrepository.com/artifact/com.github.ben-manes.caffeine/caffeinez找最新版-->
    <version>3.0.5</version>
</dependency>

推荐一个开源免费的 Spring Boot 实战项目:

https://github.com/javastacks/spring-boot-best-practice

1、缓存加载策略

1.1 Cache手动创建

最普通的一种缓存,无需指定加载方式,需要手动调用put()进行加载。需要注意的是put()方法对于已存在的key将进行覆盖,这点和Map的表现是一致的。在获取缓存值时,如果想要在缓存值不存在时,原子地将值写入缓存,则可以调用get(key, k -> value)方法,该方法将避免写入竞争。调用invalidate()方法,将手动移除缓存。

在多线程情况下,当使用get(key, k -> value)时,如果有另一个线程同时调用本方法进行竞争,则后一线程会被阻塞,直到前一线程更新缓存完成;而若另一线程调用getIfPresent()方法,则会立即返回null,不会被阻塞。

Cache<Object, Object> cache = Caffeine.newBuilder()
          //初始数量
          .initialCapacity(10)
          //最大条数
          .maximumSize(10)
          //expireAfterWrite和expireAfterAccess同时存在时,以expireAfterWrite为准
          //最后一次写操作后经过指定时间过期
          .expireAfterWrite(1, TimeUnit.SECONDS)
          //最后一次读或写操作后经过指定时间过期
          .expireAfterAccess(1, TimeUnit.SECONDS)
          //监听缓存被移除
          .removalListener((key, val, removalCause) -> { })
          //记录命中
          .recordStats()
          .build();

  cache.put("1","张三");
  //张三
  System.out.println(cache.getIfPresent("1"));
  //存储的是默认值
  System.out.println(cache.get("2",o -> "默认值"));
1.2 Loading Cache自动创建

LoadingCache是一种自动加载的缓存。其和普通缓存不同的地方在于,当缓存不存在/缓存已过期时,若调用get()方法,则会自动调用CacheLoader.load()方法加载最新值。调用getAll()方法将遍历所有的key调用get(),除非实现了CacheLoader.loadAll()方法。使用LoadingCache时,需要指定CacheLoader,并实现其中的load()方法供缓存缺失时自动加载。

在多线程情况下,当两个线程同时调用get(),则后一线程将被阻塞,直至前一线程更新缓存完成。

LoadingCache<String, String> loadingCache = Caffeine.newBuilder()
        //创建缓存或者最近一次更新缓存后经过指定时间间隔,刷新缓存;refreshAfterWrite仅支持LoadingCache
        .refreshAfterWrite(10, TimeUnit.SECONDS)
        .expireAfterWrite(10, TimeUnit.SECONDS)
        .expireAfterAccess(10, TimeUnit.SECONDS)
        .maximumSize(10)
        //根据key查询数据库里面的值,这里是个lamba表达式
        .build(key -> new Date().toString());
1.3 Async Cache异步获取

AsyncCache是Cache的一个变体,其响应结果均为CompletableFuture,通过这种方式,AsyncCache对异步编程模式进行了适配。默认情况下,缓存计算使用ForkJoinPool.commonPool()作为线程池,如果想要指定线程池,则可以覆盖并实现Caffeine.executor(Executor)方法。synchronous()提供了阻塞直到异步缓存生成完毕的能力,它将以Cache进行返回。

在多线程情况下,当两个线程同时调用get(key, k -> value),则会返回同一个CompletableFuture对象。由于返回结果本身不进行阻塞,可以根据业务设计自行选择阻塞等待或者非阻塞。

AsyncLoadingCache<String, String> asyncLoadingCache = Caffeine.newBuilder()
        //创建缓存或者最近一次更新缓存后经过指定时间间隔刷新缓存;仅支持LoadingCache
        .refreshAfterWrite(1, TimeUnit.SECONDS)
        .expireAfterWrite(1, TimeUnit.SECONDS)
        .expireAfterAccess(1, TimeUnit.SECONDS)
        .maximumSize(10)
        //根据key查询数据库里面的值
        .buildAsync(key -> {
            Thread.sleep(1000);
            return new Date().toString();
        });

//异步缓存返回的是CompletableFuture
CompletableFuture<String> future = asyncLoadingCache.get("1");
future.thenAccept(System.out::println);

2、驱逐策略

驱逐策略在创建缓存的时候进行指定。常用的有基于容量的驱逐和基于时间的驱逐。

基于容量的驱逐需要指定缓存容量的最大值,当缓存容量达到最大时,Caffeine将使用LRU策略对缓存进行淘汰;基于时间的驱逐策略如字面意思,可以设置在最后访问/写入一个缓存经过指定时间后,自动进行淘汰。

驱逐策略可以组合使用,任意驱逐策略生效后,该缓存条目即被驱逐。

  • LRU 最近最少使用,淘汰最长时间没有被使用的页面。
  • LFU 最不经常使用,淘汰一段时间内使用次数最少的页面
  • FIFO 先进先出

Caffeine有4种缓存淘汰设置

  • 大小 (LFU算法进行淘汰)
  • 权重 (大小与权重 只能二选一)
  • 时间
  • 引用 (不常用,本文不介绍)
@Slf4j
public class CacheTest {
    /**
     * 缓存大小淘汰
     */
    @Test
    public void maximumSizeTest() throws InterruptedException {
        Cache<Integer, Integer> cache = Caffeine.newBuilder()
                //超过10个后会使用W-TinyLFU算法进行淘汰
                .maximumSize(10)
                .evictionListener((key, val, removalCause) -> {
                    log.info("淘汰缓存:key:{} val:{}", key, val);
                })
                .build();

        for (int i = 1; i < 20; i++) {
            cache.put(i, i);
        }
        Thread.sleep(500);//缓存淘汰是异步的

        // 打印还没被淘汰的缓存
        System.out.println(cache.asMap());
    }

    /**
     * 权重淘汰
     */
    @Test
    public void maximumWeightTest() throws InterruptedException {
        Cache<Integer, Integer> cache = Caffeine.newBuilder()
                //限制总权重,若所有缓存的权重加起来>总权重就会淘汰权重小的缓存
                .maximumWeight(100)
                .weigher((Weigher<Integer, Integer>) (key, value) -> key)
                .evictionListener((key, val, removalCause) -> {
                    log.info("淘汰缓存:key:{} val:{}", key, val);
                })
                .build();

        //总权重其实是=所有缓存的权重加起来
        int maximumWeight = 0;
        for (int i = 1; i < 20; i++) {
            cache.put(i, i);
            maximumWeight += i;
        }
        System.out.println("总权重=" + maximumWeight);
        Thread.sleep(500);//缓存淘汰是异步的

        // 打印还没被淘汰的缓存
        System.out.println(cache.asMap());
    }


    /**
     * 访问后到期(每次访问都会重置时间,也就是说如果一直被访问就不会被淘汰)
     */
    @Test
    public void expireAfterAccessTest() throws InterruptedException {
        Cache<Integer, Integer> cache = Caffeine.newBuilder()
                .expireAfterAccess(1, TimeUnit.SECONDS)
                //可以指定调度程序来及时删除过期缓存项,而不是等待Caffeine触发定期维护
                //若不设置scheduler,则缓存会在下一次调用get的时候才会被动删除
                .scheduler(Scheduler.systemScheduler())
                .evictionListener((key, val, removalCause) -> {
                    log.info("淘汰缓存:key:{} val:{}", key, val);

                })
                .build();
        cache.put(1, 2);
        System.out.println(cache.getIfPresent(1));
        Thread.sleep(3000);
        System.out.println(cache.getIfPresent(1));//null
    }

    /**
     * 写入后到期
     */
    @Test
    public void expireAfterWriteTest() throws InterruptedException {
        Cache<Integer, Integer> cache = Caffeine.newBuilder()
                .expireAfterWrite(1, TimeUnit.SECONDS)
                //可以指定调度程序来及时删除过期缓存项,而不是等待Caffeine触发定期维护
                //若不设置scheduler,则缓存会在下一次调用get的时候才会被动删除
                .scheduler(Scheduler.systemScheduler())
                .evictionListener((key, val, removalCause) -> {
                    log.info("淘汰缓存:key:{} val:{}", key, val);
                })
                .build();
        cache.put(1, 2);
        Thread.sleep(3000);
        System.out.println(cache.getIfPresent(1));//null
    }
}

3、刷新机制

refreshAfterWrite()表示x秒后自动刷新缓存的策略可以配合淘汰策略使用,注意的是刷新机制只支持LoadingCache和AsyncLoadingCache

private static int NUM = 0;

@Test
public void refreshAfterWriteTest() throws InterruptedException {
    LoadingCache<Integer, Integer> cache = Caffeine.newBuilder()
            .refreshAfterWrite(1, TimeUnit.SECONDS)
            //模拟获取数据,每次获取就自增1
            .build(integer -> ++NUM);

    //获取ID=1的值,由于缓存里还没有,所以会自动放入缓存
    System.out.println(cache.get(1));// 1

    // 延迟2秒后,理论上自动刷新缓存后取到的值是2
    // 但其实不是,值还是1,因为refreshAfterWrite并不是设置了n秒后重新获取就会自动刷新
    // 而是x秒后&&第二次调用getIfPresent的时候才会被动刷新
    Thread.sleep(2000);
    System.out.println(cache.getIfPresent(1));// 1

    //此时才会刷新缓存,而第一次拿到的还是旧值
    System.out.println(cache.getIfPresent(1));// 2
}

4、统计

LoadingCache<String, String> cache = Caffeine.newBuilder()
        //创建缓存或者最近一次更新缓存后经过指定时间间隔,刷新缓存;refreshAfterWrite仅支持LoadingCache
        .refreshAfterWrite(1, TimeUnit.SECONDS)
        .expireAfterWrite(1, TimeUnit.SECONDS)
        .expireAfterAccess(1, TimeUnit.SECONDS)
        .maximumSize(10)
        //开启记录缓存命中率等信息
        .recordStats()
        //根据key查询数据库里面的值
        .build(key -> {
            Thread.sleep(1000);
            return new Date().toString();
        });


cache.put("1", "shawn");
cache.get("1");

/*
 * hitCount :命中的次数
 * missCount:未命中次数
 * requestCount:请求次数
 * hitRate:命中率
 * missRate:丢失率
 * loadSuccessCount:成功加载新值的次数
 * loadExceptionCount:失败加载新值的次数
 * totalLoadCount:总条数
 * loadExceptionRate:失败加载新值的比率
 * totalLoadTime:全部加载时间
 * evictionCount:丢失的条数
 */
System.out.println(cache.stats());

5、总结

上述一些策略在创建时都可以进行自由组合,一般情况下有两种方法

  • 设置 maxSizerefreshAfterWrite,不设置 expireAfterWrite/expireAfterAccess,设置expireAfterWrite当缓存过期时会同步加锁获取缓存,所以设置expireAfterWrite时性能较好,但是某些时候会取旧数据,适合允许取到旧数据的场景
  • 设置 maxSizeexpireAfterWrite/expireAfterAccess,不设置 refreshAfterWrite 数据一致性好,不会获取到旧数据,但是性能没那么好(对比起来),适合获取数据时不耗时的场景

三、SpringBoot整合Caffeine

推荐一个开源免费的 Spring Boot 实战项目:

https://github.com/javastacks/spring-boot-best-practice

1、@Cacheable相关注解

1.1 相关依赖

如果要使用@Cacheable注解,需要引入相关依赖,并在任一配置类文件上添加@EnableCaching注解

<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-cache</artifactId>
</dependency>
1.2 常用注解
  • @Cacheable:表示该方法支持缓存。当调用被注解的方法时,如果对应的键已经存在缓存,则不再执行方法体,而从缓存中直接返回。当方法返回null时,将不进行缓存操作。
  • @CachePut:表示执行该方法后,其值将作为最新结果更新到缓存中,每次都会执行该方法。
  • @CacheEvict:表示执行该方法后,将触发缓存清除操作。
  • @Caching:用于组合前三个注解,例如:
@Caching(cacheable = @Cacheable("CacheConstants.GET_USER"),
         evict = {@CacheEvict("CacheConstants.GET_DYNAMIC",allEntries = true)}
public User find(Integer id) {
    return null;
}
1.3 常用注解属性
  • cacheNames/value:缓存组件的名字,即cacheManager中缓存的名称。
  • key:缓存数据时使用的key。默认使用方法参数值,也可以使用SpEL表达式进行编写。
  • keyGenerator:和key二选一使用。
  • cacheManager:指定使用的缓存管理器。
  • condition:在方法执行开始前检查,在符合condition的情况下,进行缓存
  • unless:在方法执行完成后检查,在符合unless的情况下,不进行缓存
  • sync:是否使用同步模式。若使用同步模式,在多个线程同时对一个key进行load时,其他线程将被阻塞。
1.4 缓存同步模式

sync开启或关闭,在Cache和LoadingCache中的表现是不一致的:

  • Cache中,sync表示是否需要所有线程同步等待
  • LoadingCache中,sync表示在读取不存在/已驱逐的key时,是否执行被注解方法

2、实战

2.1 引入依赖
<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-cache</artifactId>
</dependency>

<dependency>
    <groupId>com.github.ben-manes.caffeine</groupId>
    <artifactId>caffeine</artifactId>
</dependency>
2.2 缓存常量CacheConstants

创建缓存常量类,把公共的常量提取一层,复用,这里也可以通过配置文件加载这些数据,例如@ConfigurationProperties@Value

public class CacheConstants {
    /**
     * 默认过期时间(配置类中我使用的时间单位是秒,所以这里如 3*60 为3分钟)
     */
    public static final int DEFAULT_EXPIRES = 3 * 60;
    public static final int EXPIRES_5_MIN = 5 * 60;
    public static final int EXPIRES_10_MIN = 10 * 60;

    public static final String GET_USER = "GET:USER";
    public static final String GET_DYNAMIC = "GET:DYNAMIC";

}
2.3 缓存配置类CacheConfig
@Configuration
@EnableCaching
public class CacheConfig {
    /**
     * Caffeine配置说明:
     * initialCapacity=[integer]: 初始的缓存空间大小
     * maximumSize=[long]: 缓存的最大条数
     * maximumWeight=[long]: 缓存的最大权重
     * expireAfterAccess=[duration]: 最后一次写入或访问后经过固定时间过期
     * expireAfterWrite=[duration]: 最后一次写入后经过固定时间过期
     * refreshAfterWrite=[duration]: 创建缓存或者最近一次更新缓存后经过固定的时间间隔,刷新缓存
     * weakKeys: 打开key的弱引用
     * weakValues:打开value的弱引用
     * softValues:打开value的软引用
     * recordStats:开发统计功能
     * 注意:
     * expireAfterWrite和expireAfterAccess同事存在时,以expireAfterWrite为准。
     * maximumSize和maximumWeight不可以同时使用
     * weakValues和softValues不可以同时使用
     */
    @Bean
    public CacheManager cacheManager() {
        SimpleCacheManager cacheManager = new SimpleCacheManager();
        List<CaffeineCache> list = new ArrayList<>();
        //循环添加枚举类中自定义的缓存,可以自定义
        for (CacheEnum cacheEnum : CacheEnum.values()) {
            list.add(new CaffeineCache(cacheEnum.getName(),
                    Caffeine.newBuilder()
                            .initialCapacity(50)
                            .maximumSize(1000)
                            .expireAfterAccess(cacheEnum.getExpires(), TimeUnit.SECONDS)
                            .build()));
        }
        cacheManager.setCaches(list);
        return cacheManager;
    }
}
2.4 调用缓存

这里要注意的是Cache和@Transactional一样也使用了代理,类内调用将失效

/**
 * value:缓存key的前缀。
 * key:缓存key的后缀。
 * sync:设置如果缓存过期是不是只放一个请求去请求数据库,其他请求阻塞,默认是false(根据个人需求)。
 * unless:不缓存空值,这里不使用,会报错
 * 查询用户信息类
 * 如果需要加自定义字符串,需要用单引号
 * 如果查询为null,也会被缓存
 */
@Cacheable(value = CacheConstants.GET_USER,key = "'user'+#userId",sync = true)
@CacheEvict
public UserEntity getUserByUserId(Integer userId){
    UserEntity userEntity = userMapper.findById(userId);
    System.out.println("查询了数据库");
    return userEntity;
}

版权声明:本文为CSDN博主「魅Lemon」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。原文链接:https://blog.csdn.net/lemon_TT/article/details/122905113

近期热文推荐:

1.1,000+ 道 Java面试题及答案整理(2022最新版)

2.劲爆!Java 协程要来了。。。

3.Spring Boot 2.x 教程,太全了!

4.别再写满屏的爆爆爆炸类了,试试装饰器模式,这才是优雅的方式!!

5.《Java开发手册(嵩山版)》最新发布,速速下载!

觉得不错,别忘了随手点赞+转发哦!文章来源地址https://www.toymoban.com/news/detail-540215.html

到了这里,关于再见,Guava!再见,Ehcache!的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 本地缓存无冕之王Caffeine Cache

    本文已收录至GitHub,推荐阅读 👉 Java随想录 微信公众号:Java随想录 原创不易,注重版权。转载请注明原作者和原文链接 目录 淘汰算法 Cache类型 Cache Loading Cache Async Cache Async Loading Cache 驱逐策略 基于大小的过期方式 基于时间的过期方式 基于引用的过期方式 写入外部存储

    2024年02月08日
    浏览(37)
  • 【Guava笔记01】Guava Cache本地缓存的常用操作方法

    这篇文章,主要介绍Guava Cache本地缓存的常用操作方法。 目录 一、Guava Cache本地缓存 1.1、引入guava依赖 1.2、CacheBuilder类 1.3、Guava-Cache使用案例

    2024年01月23日
    浏览(45)
  • Guava:Cache强大的本地缓存框架

    Guava Cache是一款非常优秀的本地缓存框架。 Guava Cache 的数据结构跟 JDK1.7 的 ConcurrentHashMap 类似,提供了基于时间、容量、引用三种回收策略,以及自动加载、访问统计等功能。 基本的配置 例子中,缓存最大容量设置为 100 ( 基于容量进行回收 ),配置了 失效策略 和 刷新策

    2024年02月02日
    浏览(41)
  • Guava Cache 介绍

    Guava 是 Google 提供的一套 Java 工具包,而 Guava Cache 是该工具包中提供的一套完善的 JVM 级别高并发缓存框架;本文主要介绍它的相关功能及基本使用,文中所使用到的软件版本:Java 1.8.0_341、Guava 32.1.3-jre。 缓存在很多情况下非常有用。例如,当某个值的计算或检索代价很高,

    2024年02月05日
    浏览(47)
  • Guava Cache介绍-面试用

    Guava Cache是本地缓存,数据读写都在一个进程内,相对于分布式缓存redis,不需要网络传输的过程,访问速度很快,同时也受到 JVM 内存的制约,无法在数据量较多的场景下使用。 基于以上特点,本地缓存的主要应用场景为以下几种: 对于访问速度有较大要求 存储的数据不经

    2024年02月07日
    浏览(41)
  • 缓存框架Ehcache的介绍,且与Springboot的集成

    缓存技术在现代软件开发中扮演着越来越重要的角色,作为一个成熟的开源Java缓存库,Ehcache在提高应用性能、减少数据库负载、加速用户体验方面占有一席之地。本篇博客将全方位多角度地深入理解Ehcache,帮助大家把握其核心功能、实现原理及应用实例。 Ehcache是一个纯J

    2024年01月20日
    浏览(34)
  • 常用的缓存工具有ehcache、memcache和redis,这里介绍spring中ehcache的配置。

    常用的缓存工具有ehcache、memcache和redis,这里介绍spring中ehcache的配置。 1.在pom添加依赖: 2.在applicationContext.xml添加命名空间: 3.在applicationContext.xml中配置ehcache: 4.创建ehcache的配置文件ehcache-setting.xml: 这里我们配置了自定义缓存cacheTest,10秒过期。 cache元素的属性: name:缓

    2024年02月16日
    浏览(43)
  • Ehcache 缓存框架详解

    Ehcache 是一个广泛使用的 Java 缓存框架,能够有效提升应用性能,并减少与后端数据库的交互次数。它采用了一系列高级缓存策略,包括内存缓存、磁盘缓存、分布式缓存等,并提供了丰富的 API 和工具类,可以方便地完成缓存的读写和管理。 Ehcache 主要有以下特点: 快速:

    2024年02月06日
    浏览(34)
  • 变更缓存供应商EHCACHE

    导入相关坐标依赖 导入相关配置 导入ehcache xml配置 这里需要指定特定的缓存位置 testCache,timeToIdleSeconds 表示设置缓存的时间

    2024年02月16日
    浏览(51)
  • springboot:缓存不止redis,学会使用本地缓存ehcache

    随着redis的普及,更多的同学对redis分布式缓存更加熟悉,但在一些实际场景中,其实并不需要用到redis,使用更加简单的本地缓存即可实现我们的缓存需求。 今天,我们一起来看看本地缓存组件ehcache ehcache是基于java开发的本地缓存组件,无需单独安装部署,只要引入jar包就

    2024年02月01日
    浏览(43)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包