回归预测 | MATLAB实现WOA-CNN-LSTM鲸鱼算法优化卷积长短期记忆神经网络多输入单输出回归预测

这篇具有很好参考价值的文章主要介绍了回归预测 | MATLAB实现WOA-CNN-LSTM鲸鱼算法优化卷积长短期记忆神经网络多输入单输出回归预测。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

回归预测 | MATLAB实现WOA-CNN-LSTM鲸鱼算法优化卷积长短期记忆神经网络多输入单输出回归预测

预测效果

回归预测 | MATLAB实现WOA-CNN-LSTM鲸鱼算法优化卷积长短期记忆神经网络多输入单输出回归预测,回归预测,WOA-CNN-LSTM,鲸鱼算法优化,卷积长短期记忆神经网络,多输入单输出回归预测

回归预测 | MATLAB实现WOA-CNN-LSTM鲸鱼算法优化卷积长短期记忆神经网络多输入单输出回归预测,回归预测,WOA-CNN-LSTM,鲸鱼算法优化,卷积长短期记忆神经网络,多输入单输出回归预测
回归预测 | MATLAB实现WOA-CNN-LSTM鲸鱼算法优化卷积长短期记忆神经网络多输入单输出回归预测,回归预测,WOA-CNN-LSTM,鲸鱼算法优化,卷积长短期记忆神经网络,多输入单输出回归预测
回归预测 | MATLAB实现WOA-CNN-LSTM鲸鱼算法优化卷积长短期记忆神经网络多输入单输出回归预测,回归预测,WOA-CNN-LSTM,鲸鱼算法优化,卷积长短期记忆神经网络,多输入单输出回归预测
回归预测 | MATLAB实现WOA-CNN-LSTM鲸鱼算法优化卷积长短期记忆神经网络多输入单输出回归预测,回归预测,WOA-CNN-LSTM,鲸鱼算法优化,卷积长短期记忆神经网络,多输入单输出回归预测
回归预测 | MATLAB实现WOA-CNN-LSTM鲸鱼算法优化卷积长短期记忆神经网络多输入单输出回归预测,回归预测,WOA-CNN-LSTM,鲸鱼算法优化,卷积长短期记忆神经网络,多输入单输出回归预测
回归预测 | MATLAB实现WOA-CNN-LSTM鲸鱼算法优化卷积长短期记忆神经网络多输入单输出回归预测,回归预测,WOA-CNN-LSTM,鲸鱼算法优化,卷积长短期记忆神经网络,多输入单输出回归预测
回归预测 | MATLAB实现WOA-CNN-LSTM鲸鱼算法优化卷积长短期记忆神经网络多输入单输出回归预测,回归预测,WOA-CNN-LSTM,鲸鱼算法优化,卷积长短期记忆神经网络,多输入单输出回归预测

基本介绍

回归预测 | MATLAB实现WOA-CNN-LSTM鲸鱼算法优化卷积长短期记忆神经网络多输入单输出回归预测,运行环境Matlab2020b及以上。优化正则化率、学习率、隐藏层单元数。
1.MATLAB实现WOA-CNN-LSTM鲸鱼算法优化卷积长短期记忆神经网络多输入单输出回归预测
2.输入多个特征,输出单个变量,多输入单输出回归预测;
3.多指标评价,评价指标包括:R2、MAE、MSE、RMSE等,代码质量极高;
4.鲸鱼算法优化参数为:学习率,隐含层节点,正则化参数;
5.excel数据,方便替换,运行环境2020及以上。

模型描述

鲸鱼算法(Whale Optimization Algorithm,WOA)是一种基于自然界中鲸鱼群体行为的优化算法,可以用于解决优化问题。而卷积长短期记忆神经网络(CNN-LSTM)是一种结合了卷积神经网络(CNN)和长短期记忆神经网络(LSTM)的网络结构,能够处理序列数据和空间数据。多输入单输出回归预测是指输入多个特征,输出一个数值的回归问题。
下面是使用鲸鱼算法优化CNN-LSTM网络进行多输入单输出回归预测的步骤:
首先,需要确定网络的结构,包括卷积层、LSTM层、全连接层等。
然后,需要定义适应度函数,即网络在训练集上的预测误差。这里可以选择均方误根差(RMSE)作为适应度函数。
接下来,可以使用鲸鱼算法进行参数优化。具体来说,可以将CNN-LSTM网络的参数作为优化变量,将适应度函数作为目标函数,使用鲸鱼算法进行迭代优化,直到目标函数收敛或达到预设的迭代次数。
在优化过程中,需要设置好鲸鱼算法的参数,包括优化正则化率、学习率、隐藏层单元数等。
最后,可以使用优化后的CNN-LSTM网络进行多输入单输出回归预测。
需要注意的是,鲸鱼算法虽然可以用于优化神经网络,但并不是万能的,也存在局限性。在使用鲸鱼算法进行优化时,需要根据具体问题进行调参和优化,以获得更好的优化效果。

程序设计

  • 完整源码和数据获取方式1:私信博主回复WOA-CNN-LSTM鲸鱼算法优化卷积长短期记忆神经网络多输入单输出回归预测,同等价值程序兑换;
  • 完整程序和数据下载方式2(订阅《组合优化》专栏,同时获取《组合优化》专栏收录的任意8份程序,数据订阅后私信我获取):MATLAB实现WOA-CNN-LSTM鲸鱼算法优化卷积长短期记忆神经网络多输入单输出回归预测
%%  获取最优种群
   for j = 1 : SearchAgents
       if(fitness_new(j) < GBestF)
          GBestF = fitness_new(j);
          GBestX = X_new(j, :);
       end
   end
   
%%  更新种群和适应度值
   pop_new = X_new;
   fitness = fitness_new;

%%  更新种群 
   [fitness, index] = sort(fitness);
   for j = 1 : SearchAgents
      pop_new(j, :) = pop_new(index(j), :);
   end

%%  得到优化曲线
   curve(i) = GBestF;
   avcurve(i) = sum(curve) / length(curve);
end

%%  得到最优值
Best_pos = GBestX;
Best_score = curve(end);

%%  得到最优参数
NumOfUnits       =abs(round( Best_pos(1,3)));       % 最佳神经元个数
InitialLearnRate =  Best_pos(1,2) ;% 最佳初始学习率
L2Regularization = Best_pos(1,1); % 最佳L2正则化系数
% 
inputSize = k;
outputSize = 1;  %数据输出y的维度  
%  参数设置
opts = trainingOptions('adam', ...                    % 优化算法Adam
    'MaxEpochs', 20, ...                              % 最大训练次数
    'GradientThreshold', 1, ...                       % 梯度阈值
    'InitialLearnRate', InitialLearnRate, ...         % 初始学习率
    'LearnRateSchedule', 'piecewise', ...             % 学习率调整
    'LearnRateDropPeriod', 6, ...                     % 训练次后开始调整学习率
    'LearnRateDropFactor',0.2, ...                    % 学习率调整因子
    'L2Regularization', L2Regularization, ...         % 正则化参数
    'ExecutionEnvironment', 'gpu',...                 % 训练环境
    'Verbose', 0, ...                                 % 关闭优化过程
    'SequenceLength',1,...
    'MiniBatchSize',10,...
    'Plots', 'training-progress');                    % 画出曲线

学习总结

该算法的流程如下:
数据预处理。将输入数据进行预处理,如将牌型数据转化为数字、进行归一化、缺失值填充等操作。卷积网络。对输入数据进行卷积神经网络(CNN)处理,提取其特征表示。LSTM网络。将卷积网络提取的特征序列输入长短期记忆神经网络(LSTM),将其转化为单一输出。输出LSTM网络的预测结果。
在该算法中,卷积网络用于提取输入数据的特征,LSTM网络将卷积网络提取的特征序列转化为单一输出,并保留其时间序列信息,从而能够更好地预测未来的结果。该算法的优化方法主要集中在卷积网络和LSTM网络两个阶段:卷积网络优化。可以通过增加卷积网络的深度和宽度,增加其表达能力,提高对输入序列的特征提取能力。同时,可以采用更好的激活函数和正则化方法,如ReLU和Dropout,以增加网络的非线性能力和泛化能力。
LSTM网络优化。可以通过增加LSTM网络的隐藏层大小和层数,增加其表达能力和记忆能力,提高对输入序列的建模能力。同时,可以采用更好的门控机制和梯度裁剪方法,如LSTM和Clip Gradient,以增加网络的稳定性和泛化能力。
总之,通过卷积神经网络和长短期记忆神经网络的结合,可以对多输入单输出的回归预测任务进行建模和预测。其优化方法主要包括调整模型结构、优化损失函数和优化算法、融合多个数据源、增加数据预处理和增强、调整模型超参数等。通过这些优化方法,可以提高模型的预测性能和泛化能力,适应更广泛的应用场景。

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501文章来源地址https://www.toymoban.com/news/detail-540564.html

到了这里,关于回归预测 | MATLAB实现WOA-CNN-LSTM鲸鱼算法优化卷积长短期记忆神经网络多输入单输出回归预测的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包