4.8 x64dbg 学会扫描应用堆栈

这篇具有很好参考价值的文章主要介绍了4.8 x64dbg 学会扫描应用堆栈。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

堆栈是计算机中的两种重要数据结构 堆(Heap)和栈(Stack)它们在计算机程序中起着关键作用,在内存中堆区(用于动态内存分配)和栈区(用于存储函数调用、局部变量等临时数据),进程在运行时会使用堆栈进行参数传递,这些参数包括局部变量,临时空间以及函数切换时所需要的栈帧等。

  • 栈(Stack)是一种遵循后进先出(LIFO)原则的线性数据结构。它主要用于存储和管理程序中的临时数据,如函数调用和局部变量。栈的主要操作包括压栈(添加元素)和弹栈(移除元素)。
  • 堆(Heap)是一种树形数据结构,通常用于实现优先队列。堆中的每个节点都有一个键值(key),并满足特定性质。最常见的堆类型是二叉堆(包括最大堆和最小堆)。堆在计算机程序中的应用包括堆排序算法和内存管理等。

而针对栈地址的分析在漏洞挖掘中尤为重要,栈溢出(Stack Overflow)是一种计算机程序中的运行时错误,通常发生在缓冲区(buffer)中。缓冲区是一段内存空间,用于临时存储数据。当程序试图向栈中写入过多数据时,可能导致栈溢出,从而破坏其他内存区域或导致程序崩溃,严重的则可能会导致黑客控制EIP指针,而执行恶意代码。

栈溢出的原因主要有以下几点:

  • 递归调用过深:当函数递归调用自身的层次过深时,可能导致栈溢出。这是因为每次函数调用都会在栈中分配内存,用于存储函数的局部变量和返回地址。如果递归层数太多,可能导致栈空间不足,从而引发栈溢出。

  • 局部变量占用过多栈空间:如果函数中的局部变量(尤其是数组和结构体)占用过多栈空间,可能导致栈溢出。这种情况下,可以考虑将部分局部变量移到堆内存中,以减小栈空间的压力。

  • 缓冲区溢出:当程序向缓冲区写入的数据超过其分配的空间时,可能发生缓冲区溢出。这种溢出可能导致栈空间中的其他数据被破坏,从而引发栈溢出。

LyScript 插件中提供了针对堆栈的操作函数,对于堆的开辟与释放通常可使用create_alloc()delete_alloc()在之前的文章中我们已经使用了堆创建函数,本章我们将重点学习针对栈的操作函数,栈操作函数有三种,其中push_stack用于入栈,pop_stack用于出栈,而最有用的还属peek_stack函数,该函数可用于检查指定堆栈位置处的内存参数,利用这个特性就可以实现,对堆栈地址的检测,或对堆栈的扫描等。

读者注意:由于peek_stack命令传入的堆栈下标位置默认从0开始,而输出的结果则一个十进制有符号长整数,一般而言有符号数会出现复数的情形,读者在使用时应更具自己的需求自行转换。

而针对有符号与无符号数的转换也很容易实现,long_to_ulong函数用于将有符号整数转换为无符号整数(long_to_ulong)而与之对应的ulong_to_long函数,则用于将无符号整数转换为有符号整数(ulong_to_long)。这些函数都接受一个整数参数(inter)和一个布尔参数(is_64)。当 is_64False 时,函数处理32位整数;当 is_64True 时,函数处理64位整数。

  • 有符号整数转无符号数(long_to_ulong):通过将输入整数与相应位数的最大值执行按位与操作(&)来实现转换。对于32位整数,使用 (1 << 32) - 1 计算最大值;对于64位整数,使用 (1 << 64) - 1 计算最大值。

  • 无符号整数转有符号数(ulong_to_long):通过计算输入整数与相应位数的最高位的差值来实现转换。首先,它使用按位与操作(&)来计算输入整数与最高位之间的关系。对于32位整数,使用 (1 << 31) - 1 和 (1 << 31);对于64位整数,使用(1 << 63) - 1 (1 << 63)。然后,将这两个结果相减以获得有符号整数。

from LyScript32 import MyDebug

# 有符号整数转无符号数
def long_to_ulong(inter,is_64 = False):
    if is_64 == False:
        return inter & ((1 << 32) - 1)
    else:
        return inter & ((1 << 64) - 1)

# 无符号整数转有符号数
def ulong_to_long(inter,is_64 = False):
    if is_64 == False:
        return (inter & ((1 << 31) - 1)) - (inter & (1 << 31))
    else:
        return (inter & ((1 << 63) - 1)) - (inter & (1 << 63))

if __name__ == "__main__":
    dbg = MyDebug()

    connect_flag = dbg.connect()
    print("连接状态: {}".format(connect_flag))

    for index in range(0,10):

        # 默认返回有符号数
        stack_address = dbg.peek_stack(index)

        # 使用转换
        print("默认有符号数: {:15} --> 转为无符号数: {:15} --> 转为有符号数: {:15}".
              format(stack_address, long_to_ulong(stack_address),ulong_to_long(long_to_ulong(stack_address))))

    dbg.close()

如上代码中我们在当前堆栈中向下扫描10条,并通过转换函数以此输出该堆栈信息的有符号与无符号形式,这段代码输出效果如下图所示;

4.8 x64dbg 学会扫描应用堆栈

我们继续完善这个功能,通过使用get_disasm_one_code()获取到堆栈的反汇编代码,并以此来进行更多的判断形势,如下代码中只需要增加反汇编一行功能即可。

if __name__ == "__main__":
    dbg = MyDebug()

    connect_flag = dbg.connect()
    print("连接状态: {}".format(connect_flag))

    for index in range(0,10):

        # 默认返回有符号数
        stack_address = dbg.peek_stack(index)

        # 反汇编一行
        dasm = dbg.get_disasm_one_code(stack_address)

        # 根据地址得到模块基址
        if stack_address <= 0:
            mod_base = 0
        else:
            mod_base = dbg.get_base_from_address(long_to_ulong(stack_address))

        print("stack => [{}] addr = {:10} base = {:10} dasm = {}".format(index, hex(long_to_ulong(stack_address)),hex(mod_base), dasm))

    dbg.close()

运行上代码,将自动扫描前十行堆栈中的反汇编指令,并输出如下图所示的功能;

4.8 x64dbg 学会扫描应用堆栈

如上图我们可以得到堆栈处的反汇编参数,但如果我们需要检索堆栈特定区域内是否存在返回到模块的地址,该如何实现呢?

该功能的实现其实很简单,首先需要得到程序全局状态下的所有加载模块的基地址,然后得到当前堆栈内存地址内的实际地址,并通过实际内存地址得到模块基址,对比全局表即可拿到当前模块是返回到了哪个模块的。

if __name__ == "__main__":
    dbg = MyDebug()

    connect_flag = dbg.connect()
    print("连接状态: {}".format(connect_flag))

    # 得到程序加载过的所有模块信息
    module_list = dbg.get_all_module()

    # 向下扫描堆栈
    for index in range(0,10):

        # 默认返回有符号数
        stack_address = dbg.peek_stack(index)

        # 反汇编一行
        dasm = dbg.get_disasm_one_code(stack_address)

        # 根据地址得到模块基址
        if stack_address <= 0:
            mod_base = 0
        else:
            mod_base = dbg.get_base_from_address(long_to_ulong(stack_address))

        # print("stack => [{}] addr = {:10} base = {:10} dasm = {}".format(index, hex(long_to_ulong(stack_address)),hex(mod_base), dasm))
        if mod_base > 0:
            for x in module_list:
                if mod_base == x.get("base"):
                    print("stack => [{}] addr = {:10} base = {:10} dasm = {:15} return = {:10}"
                          .format(index,hex(long_to_ulong(stack_address)),hex(mod_base), dasm,
                                  x.get("name")))

    dbg.close()

运行如上代码片段,则会输出如下图所示的堆栈返回位置;

4.8 x64dbg 学会扫描应用堆栈文章来源地址https://www.toymoban.com/news/detail-540957.html

到了这里,关于4.8 x64dbg 学会扫描应用堆栈的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 1.1 熟悉x64dbg调试器

    x64dbg 是一款开源、免费、功能强大的动态反汇编调试器,它能够在 Windows 平台上进行应用程序的反汇编、调试和分析工作。与传统的调试器如 Ollydbg 相比,x64dbg调试器的出现填补了 Ollydbg 等传统调试器的不足,为反汇编调试工作提供了更高效、更可靠的解决方案。正是因为有

    2024年02月12日
    浏览(41)
  • 4.5 x64dbg 探索钩子劫持技术

    钩子劫持技术是计算机编程中的一种技术,它们可以让开发者拦截系统函数或应用程序函数的调用,并在函数调用前或调用后执行自定义代码,钩子劫持技术通常用于病毒和恶意软件,也可以让开发者扩展或修改系统函数的功能,从而提高软件的性能和增加新功能。 4.5.1 探索

    2024年02月13日
    浏览(41)
  • 4.9 x64dbg 内存处理与差异对比

    LyScript 插件中针对内存读写函数的封装功能并不多,只提供了最基本的 内存读取 和 内存写入 系列函数的封装,本章将继续对API接口进行封装,实现一些在软件逆向分析中非常实用的功能,例如ShellCode代码写出与置入,内存交换,内存区域对比,磁盘与内存镜像比较,内存特

    2024年02月16日
    浏览(41)
  • 4.3 x64dbg 搜索内存可利用指令

    发现漏洞的第一步则是需要寻找到可利用的反汇编指令片段,在某些时候远程缓冲区溢出需要通过类似于 jmp esp 等特定的反汇编指令实现跳转功能,并以此来执行布置好的 ShellCode 恶意代码片段, LyScript 插件则可以很好的完成对当前进程内存中特定函数的检索工作。 一般而言

    2024年02月12日
    浏览(41)
  • 4.4 x64dbg 绕过反调试保护机制

    在Windows平台下,应用程序为了保护自己不被调试器调试会通过各种方法限制进程调试自身,通常此类反调试技术会限制我们对其进行软件逆向与漏洞分析,下面是一些常见的反调试保护方法: IsDebuggerPresent:检查当前程序是否在调试器环境下运行。 OutputDebugString:向调试器发

    2024年02月12日
    浏览(38)
  • 4.10 x64dbg 反汇编功能的封装

    LyScript 插件提供的反汇编系列函数虽然能够实现基本的反汇编功能,但在实际使用中,可能会遇到一些更为复杂的需求,此时就需要根据自身需要进行二次开发,以实现更加高级的功能。本章将继续深入探索反汇编功能,并将介绍如何实现反汇编代码的检索、获取上下一条代

    2024年02月13日
    浏览(45)
  • OllyDbg 与 x64Dbg 与 Windbg 与 IDA 区别是什么?

    OllyDbg 和 x64Dbg 大致属于同一类别。它们的主要优势是在没有符号信息的情况下进行调试(尽管它们也可以使用符号信息进行调试)。OllyDbg(封闭源代码)已经很久没有维护了,并且仅限于 x86 32 位。另一方面,x64Dbg 被积极维护,开源并且可以处理 x86 和 x64。两者都支持插件

    2024年02月08日
    浏览(43)
  • LNK1112: 模块计算机类型“x86”与目标计算机类型“x64”冲突(VS2019)

    刚装好vs2019,创建一个简单的控制台程序,输出“Hello World!” ,x86下编译链接没有问题,但是平台设为“x64\\\"后出现了标题所说的错误。 查阅网络,没有正确的答案。 我试着分析这个错误:是由于链接中的模块编译为“x86”的。刚才是以为链接库中包含了x86类型的库。但是

    2024年02月12日
    浏览(40)
  • 计算机组成原理知识——CPU结构组成和功能、堆栈、RISC、

    2023.9.6 计组知识开始学习 中央处理单元 :简称为CPU或处理器,功能是控制计算机的操作和处理数据 控制器 :控制计算机的操作,例如读取指令、分析指令、时序、总线的控制等 运算器 :完成数据处理功能 寄存器 :临时存储指令、地址、数据、计算结果等 中断 3个:取指

    2024年02月09日
    浏览(41)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包