数学建模——二维散乱点插值

这篇具有很好参考价值的文章主要介绍了数学建模——二维散乱点插值。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

import numpy as np
import  matplotlib.pyplot as plt
from scipy.interpolate import  interp1d
from mpl_toolkits import  mplot3d
from scipy.interpolate import griddata


x=np.array([129,140,103.5,88,185.5,195,105,157.5,107.5,77,81,162,162,117.5])
y=np.array([7.5,141.5,23,147,22.5,137.5,85.5,-6.5,-81,3,56.5,-66.5,84,-33.5])
z=-np.array([4,8,6,8,6,8,8,9,9,8,8,9,4,9])

xy=np.vstack([x,y]).T
xn=np.linspace(x.min(),x.max(),100)
yn=np.linspace(y.min(),y.max(),100)

xng,yng=np.meshgrid(xn,yn)

#基于最近邻插值方法,在 (xng, yng) 网格上计算 z 的插值结果。
zn=griddata(xy,z,(xng,yng),method='nearest')


plt.rc('font',size=16)
ax=plt.subplot(131,projection='3d')
ax.plot_surface(xng,yng,zn,cmap='viridis')
ax.set_xlabel('$x$')
ax.set_ylabel('$y$')
ax.set_zlabel('$z$')

plt.subplot(133)
#c = plt.contour(xn, yn, zn, 8) 的作用是使用 xn 和 yn 网格以及对应的插值结果 zn 绘制等高线图。参数 8 表示要绘制的等高线数量。
c=plt.contour(xn,yn,zn,8)

#plt.clabel(c) 的作用是在等高线图 c 上添加数值标签。
plt.clabel(c)
plt.show()




最后的效果图:

数学建模——二维散乱点插值,数学建模

 文章来源地址https://www.toymoban.com/news/detail-541060.html

到了这里,关于数学建模——二维散乱点插值的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 数学建模 插值算法

    有问题 牛顿差值也有问题 它们都有龙格现象,一般用分段插值。 插值预测要比灰色关联预测更加准确,灰色预测只有2次 拟合样本点要非常多,样本点少差值合适

    2024年02月16日
    浏览(37)
  • 数学建模之插值算法

    注:本文面向应用,参考了清风大大的资料以及司守奎老师的《数学建模算法与应用》,属作者的个人学习总结。 当已知函数点非常少的时候,我们经常要 模拟产生一些新的函数值 来支撑后续数据分析。这就是插值算法的应用目的。*插值算法还可以用来实现短期预测,但我

    2024年01月24日
    浏览(45)
  • 数学建模——插值(上)

    本文是面向数学建模准备的,是介绍性文章,没有过多关于原理的说明!!! 已知区间[a,b]上有系列观测值(xi,yi),i=0,1,2,…,n,求一条曲线把这些点依次连接起来,称为插值,这条曲线的表达式f(x)称为插值函数。一般f(x)解析式也是未知的。  最简单、最直观的做法就是把两个

    2024年02月13日
    浏览(87)
  • 数学建模实验-插值和拟合

    1.  掌握各种数据插值方法的 MATLAB 实现方法; 2.  掌握数据拟合的 MATLAB 实现方法。 1.  已知平面区域 0  ≤  x  ≤  4800  , 0  ≤  y  ≤  5600的高程数据如data5_1.xlsx所示。 试用二维插值求x,y方向间隔都为50m的高程,并画出该区域的等高线图。 表格数据如图: 2. 在一次

    2024年04月12日
    浏览(37)
  • 数学建模之插值法

    数模比赛中,常常需要根据已知的函数点进行数据、模型的处理和分析,而有时候现有的数据是极少的,不足以支撑分析的进行,这时就需要使用一些数学的方法,“ 模拟产生 ”一些新的但又比较靠谱的值来满足需求,这就是插值的作用。 那什么是插值法? 插值法又可以分

    2024年02月03日
    浏览(49)
  • 数学建模-插值算法(Matlab)

    注意:代码文件仅供参考,一定不要直接用于自己的数模论文中 国赛对于论文的查重要求非常严格,代码雷同也算作抄袭 如何修改代码避免查重的方法:https://www.bilibili.com/video/av59423231   //清风数学建模 简单来说是根据已知点进行线性数据预测,但数据太少需要通过数学方

    2023年04月26日
    浏览(58)
  • 【数学建模】《实战数学建模:例题与讲解》第四讲-插值与拟合(含Matlab代码)

    如果这篇文章对你有帮助,欢迎点赞与收藏~ 在实际问题中,对于给定的函数 y = f(x) ,通常通过实验观测在某个区间 [a, b] 上一系列点 x_i 上的函数值 y_i = f(x_i) 得到。当需要在这些观测点 x_0, x_1, ..., x_n 之间的某些点 x 上估计函数值时,插值法和拟合是两种常用的数学方法。

    2024年02月05日
    浏览(55)
  • 数学建模学习笔记(一):插值法

    本文主要内容是分享博主在学习MATLAB插值与拟合过程中的一些笔记与见解,并记录使用代码实现的过程 一维插值问题可描述为:已知函数在 x 0 , x 1 , … , x n x_0,x_1,…,x_n x 0 ​ , x 1 ​ , … , x n ​ 处的值 y 0 , y 1 , … , y n y_0,y_1,…,y_n y 0 ​ , y 1 ​ , … , y n ​ ,求简单函数 p (

    2024年02月06日
    浏览(56)
  • 【MATLAB 数学建模】 插值方法 数据拟合

    一维插值是一种在给定有限数据点集合的情况下,通过构建一个函数来近似估计这些数据点之间的值。它基于假设,在相邻数据点之间存在某种连续性或平滑性。 一维插值常用于曲线拟合、曲线重建和数据补全等应用中。其中最简单的一种插值方法是线性插值,即通过连接相

    2024年02月08日
    浏览(55)
  • 数学建模常用模型(二):插值与拟合

    在数学建模中,插值和拟合是常用的数据分析技术,用于从给定的离散数据中推断出连续函数或曲线的近似形式。 插值是通过已知数据点之间的插值多项式来估计未知数据点的值。插值方法的目标是在给定数据点上准确地重现原始数据,以便在数据点之间进行插值时获得尽可

    2024年02月12日
    浏览(47)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包