机器学习 day24(多类分类模型,Softmax回归算法及其损失函数)

这篇具有很好参考价值的文章主要介绍了机器学习 day24(多类分类模型,Softmax回归算法及其损失函数)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1. 多类分类
机器学习 day24(多类分类模型,Softmax回归算法及其损失函数),机器学习,学习

  • 多类分类问题仍然是分类问题,所以预测y的可能结果是少量的,而不是无穷多个,且对于多类分类它>2
    机器学习 day24(多类分类模型,Softmax回归算法及其损失函数),机器学习,学习
  • 如上图:左侧为二分类,右侧为多分类,可以通过决策边界来划分区域

2. Softmax回归算法
机器学习 day24(多类分类模型,Softmax回归算法及其损失函数),机器学习,学习

  • 对逻辑回归模型,先计算z,再计算g(z)。此时可以将逻辑回归视为计算两个数字,a₁是当给定x时,预测y取1的概率;a₂则是当给定x时,预测y取0的概率。因为逻辑回归只有两个结果(0、1),所以a₁ + a₂必须为1
  • 推广到softmax回归模型,w和b为y取每种结果时的模型参数,先计算z。若此时y有四个结果(1、2、3、4),则可以用softmax回归公式得出a₁、a₂、a₃、a₄,分别为当给定输入特征x,预测y取1、2、3、4的概率,因为该softmax回归模型只有四个结果(1、2、3、4),所以a₁ + a₂ + a₃ + a₄必须为1
  • 对于一般情况下的softmax回归模型,先计算z,若此时y有N个结果,则可以用softmax回归公式得出当预测y取j时的概率aj,因为softmax回归模型共有N个结果,所以a₁ + a₂ +… + an必须为1。
  • 若N取2,则softmax回归模型的计算结果与逻辑回归模型的计算结果相同。因此softmax回归模型是逻辑回归模型的推广

3. Softmax回归算法的损失函数
机器学习 day24(多类分类模型,Softmax回归算法及其损失函数),机器学习,学习文章来源地址https://www.toymoban.com/news/detail-541118.html

  • 对于逻辑回归模型,我们可以用a₂来表示1-a₁。cost function是定义在整个训练集上的,loss function是定义在单个样本上的,且cost function是所有样本的loss function的平均值
  • 对于softmax回归模型,在每个训练实例中,y每次只有一个结果,所以每次只能取一个值。但可以用上图的公式来计算对于每个y的损失函数的值
  • 由于0<aj<1,所以softmax的损失函数的取值范围为(0,+∞),且当aj越接近1,损失函数的值就越接近0

到了这里,关于机器学习 day24(多类分类模型,Softmax回归算法及其损失函数)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • pytorch学习-线性神经网络——softmax回归+损失函数+图片分类数据集

            Softmax回归(Softmax Regression)是一种常见的多分类模型,可以用于将输入变量映射到多个类别的概率分布中。softmax回归是机器学习中非常重要并且经典的模型,虽然叫回归,实际上是一个分类问题         回归是估计一个连续值,分类是预测一个连续的类别  示例

    2024年02月15日
    浏览(49)
  • 三 动手学深度学习v2 —— Softmax回归+损失函数+图片分类数据集

    softmax回归 损失函数 1. softmax回归 回归vs分类: 回归估计一个连续值 分类预测一个离散类别 从回归到多类分类 回归 单连续数值输出 自然区间R 跟真实值的误差作为损失 分类 通常多个输出 输出i是预测为第i类的置信度 总结: 2. 损失函数 L2 loss 均方损失 l ( y , y ′ ) = 1 2 ( y −

    2024年02月14日
    浏览(39)
  • 【AI】《动手学-深度学习-PyTorch版》笔记(十一):分类问题-softmax回归

    1)连续值与离散值 线性回归模型,适用于输出为连续值的情景。 softmax回归模型,适用于输出为离散值的情景。例如图像类别,就需要对离散值进行预测。softmax回归模型引入了softmax运算,使输出更适合离散值的预测和训练。 2)输出个数 线性回归模型,输出单元为1个,而

    2024年02月14日
    浏览(74)
  • 头歌-机器学习 第11次实验 softmax回归

    第1关:softmax回归原理 任务描述 本关任务:使用 Python 实现 softmax 函数。 相关知识 为了完成本关任务,你需要掌握:1. softmax 回归原理,2. softmax 函数。 softmax回归原理 与逻辑回归一样, softmax 回归同样是一个分类算法,不过它是一个多分类的算法,我们的数据有多少个特征

    2024年04月11日
    浏览(40)
  • 机器学习|Softmax 回归的数学理解及代码解析

    Softmax 回归是一种常用的多类别分类算法,适用于将输入向量映射到多个类别的概率分布。在本文中,我们将深入探讨 Softmax 回归的数学原理,并提供 Python 示例代码帮助读者更好地理解和实现该算法。 Softmax 函数将输入向量的线性得分转换为每个类别的概率。给定一个输入向

    2024年02月12日
    浏览(32)
  • 2 机器学习知识 Softmax回归 deep learning system

    The hypothesis class: 模型结构 loss fuction 损失函数 An optimization method:在训练集上减小loss的方法 训练数据: x ( i ) ∈ R n , y ( i ) ∈ 1 , . . . , k f o r i = 1 , . . . m x^{(i)}in mathbb{R}^n ,y^{(i)}in {1,...,k} for i=1,...m x ( i ) ∈ R n , y ( i ) ∈ 1 , ... , k f or i = 1 , ... m n 是输入数据的维度,输入的每

    2024年02月05日
    浏览(42)
  • python机器学习——分类模型评估 & 分类算法(k近邻,朴素贝叶斯,决策树,随机森林,逻辑回归,svm)

    交叉验证:为了让被评估的模型更加准确可信 交叉验证:将拿到的数据,分为训练和验证集。以下图为例:将数据分成5份,其中一份作为验证集。然后经过5次(组)的测试,每次都更换不同的验证集。即得到5组模型的结果,取平均值作为最终结果。又称5折交叉验证。 通常情

    2024年02月03日
    浏览(67)
  • 【MATLAB第56期】#源码分享 | 基于MATLAB的机器学习算法单输入多输出分类预测模型思路(回归改分类)

    针对单输入多输出分类预测,可采用回归的方式进行预测。 本文采用BP神经网络进行演示。 数据为1输入,5输出,总共482个样本。 输出分为五个指标,每个指标共4个评分维度,即【0 10 20 30】 保持样本均匀多样性,可将数据打乱。 若不需要打乱,上面代码改成: 训练样本数

    2024年02月17日
    浏览(35)
  • 【吴恩达·机器学习】第三章:分类任务:逻辑回归模型(交叉熵损失函数、决策边界、过拟合、正则化)

    博主简介: 努力学习的22级计算机科学与技术本科生一枚🌸 博主主页: @Yaoyao2024 每日一言🌼: 勇敢的人,不是不落泪的人,而是愿意含着泪继续奔跑的人。 ——《朗读者》 本系列博客文章是博主本人根据吴恩达老师2022年的机器学习课程所学而写,主要包括老师的核心讲义

    2024年02月19日
    浏览(59)
  • 【Python机器学习】决策树、逻辑回归、神经网络等模型对电信用户流失分类实战(附源码和数据集)

    需要源码和数据集请点赞关注收藏后评论区留言私信~~~ 该实例数据来自kaggle,它的每一条数据为一个用户的信息,共有21个有效字段,其中最后一个字段Churn标志该用户是否流失   可用pandas的read_csv()函数来读取数据,用DataFrame的head()、shape、info()、duplicated()、nunique()等来初步

    2024年02月03日
    浏览(49)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包