机器学习 day23(激活函数的作用,线性激活函数的不足)

这篇具有很好参考价值的文章主要介绍了机器学习 day23(激活函数的作用,线性激活函数的不足)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1. 线性激活函数的局限性
机器学习 day23(激活函数的作用,线性激活函数的不足),机器学习,学习

  • 如果我们将神经网络模型中的所有激活函数都设为线性激活函数,那整个神经网络模型就跟线性回归模型极其相似,且它无法拟合比线性回归模型更复杂的关系

2. 激活函数全设为线性回归激活函数的例子
机器学习 day23(激活函数的作用,线性激活函数的不足),机器学习,学习文章来源地址https://www.toymoban.com/news/detail-541478.html

  • 若把a¹带入a²,则a²可简化为wx+b,这与其使用一个带有隐藏层和输出层的神经网络模型,不如直接使用线性回归模型。
  • 原理:线性函数的线性函数就是一个线性函数
    机器学习 day23(激活函数的作用,线性激活函数的不足),机器学习,学习
  • 所以一般情况下,如果对神经网络模型的所有隐藏层使用线性激活函数,输出层也使用线性激活函数,那么该模型的计算结果等同于一个线性回归模型的结果,a⁴可以表示为wx+b
  • 如果对神经网络模型的所有隐藏层使用线性激活函数,输出层使用sigmoid激活函数,那么该模型的计算结果等同于逻辑回归模型的结果,a⁴可以表示为g(z)
  • 激活函数的目的是,在神经元的输出中引入非线性,使模型能够学习更复杂的输入和输出映射
  • 解释:如果所有隐藏层都用线性回归激活函数,那么最后的结果可以用一个线性回归式子来表示,也就与隐藏层无关,只跟输出层有关。若输出层为线性回归,则模型整体等同于线性回归模型,若输出层为逻辑回归,则模型整体等同于逻辑回归模型,同时该模型也不能拟合比等价模型更复杂的关系
  • 综上:不要在神经网络模型的隐藏层中使用线性回归激活函数,建议使用ReLU激活函数

到了这里,关于机器学习 day23(激活函数的作用,线性激活函数的不足)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 机器学习与深度学习——自定义函数进行线性回归模型

    目的与要求 1、通过自定义函数进行线性回归模型对boston数据集前两个维度的数据进行模型训练并画出SSE和Epoch曲线图,画出真实值和预测值的散点图,最后进行二维和三维度可视化展示数据区域。 2、通过自定义函数进行线性回归模型对boston数据集前四个维度的数据进行模型

    2024年02月13日
    浏览(43)
  • 【机器学习】P2 线性回归、损失函数与梯度下降

    线性回归简单的说就是线性函数; 线性回归属于机器学习 回归问题; 在线性回归建立的线性关系的模型中,假设目标变量和自变量之间存在一种线性关系,模型的目标是找到最佳的拟合线,是的模型对于未知的数据能够进行最准确的预测; 线性回归模型的一般形式为: y

    2023年04月08日
    浏览(42)
  • 激活函数在自动语音识别中的作用

    自动语音识别(Automatic Speech Recognition, ASR)是一种人工智能技术,它能将人类的语音信号转换为文本。自动语音识别技术广泛应用于智能家居、语音助手、语音搜索、语音控制等领域。在自动语音识别系统中,激活函数(Activation Function)是一种非线性函数,它在神经网络中扮演着

    2024年04月14日
    浏览(38)
  • python机器学习(五)逻辑回归、决策边界、代价函数、梯度下降法实现线性和非线性逻辑回归

    线性回归所解决的问题是把数据集的特征传入到模型中,预测一个值使得误差最小,预测值无限接近于真实值。比如把房子的其他特征传入到模型中,预测出房价, 房价是一系列连续的数值,线性回归解决的是有监督的学习。有很多场景预测出来的结果不一定是连续的,我们

    2024年02月15日
    浏览(88)
  • 【吴恩达·机器学习】第二章:单变量线性回归模型(代价函数、梯度下降、学习率、batch)

    博主简介: 努力学习的22级计算机科学与技术本科生一枚🌸 博主主页: @Yaoyao2024 每日一言🌼: 勇敢的人,不是不落泪的人,而是愿意含着泪继续奔跑的人。 ——《朗读者》 本系列博客文章是博主本人根据吴恩达老师2022年的机器学习课程所学而写,主要包括老师的核心讲义

    2024年02月19日
    浏览(48)
  • 机器学习 day24(多类分类模型,Softmax回归算法及其损失函数)

    1. 多类分类 多类分类问题仍然是分类问题,所以预测y的可能结果是少量的,而不是无穷多个,且对于多类分类它>2 如上图:左侧为二分类,右侧为多分类,可以通过决策边界来划分区域 2. Softmax回归算法 对逻辑回归模型,先计算z,再计算g(z)。此时可以将逻辑回归视为计算

    2024年02月13日
    浏览(43)
  • 机器学习之常用激活函数

    人工神经网络中最基本的单元叫神经元,又叫感知器,它是模拟人脑神经系统的神经元(分析和记忆)、树突(感知)、轴突(传导)的工作原理,借助计算机的快速计算和存储来实现。它的主体结构如下: 激活函数常用类型有:线性激活函数、符号激活函数、Sigmoid激活函

    2024年01月18日
    浏览(38)
  • python机器学习(三)特征预处理、鸢尾花案例--分类、线性回归、代价函数、梯度下降法、使用numpy、sklearn实现一元线性回归

    数据预处理的过程。数据存在不同的量纲、数据中存在离群值,需要稳定的转换数据,处理好的数据才能更好的去训练模型,减少误差的出现。 标准化 数据集的标准化对scikit-learn中实现的大多数机器学习算法来说是常见的要求,很多案例都需要标准化。如果个别特征或多或

    2024年02月16日
    浏览(46)
  • PyTorch入门学习(十):神经网络-非线性激活

    目录 一、简介 二、常见的非线性激活函数 三、实现非线性激活函数 四、示例:应用非线性激活函数 一、简介 在神经网络中,激活函数的主要目的是引入非线性特性,从而使网络能够对非线性数据建模。如果只使用线性变换,那么整个神经网络就会退化为一个线性模型,因

    2024年02月06日
    浏览(44)
  • 【Python & 机器学习 基础】绘制 sigmoid 函数曲线 | exp:以e为底的指数函数(科普向)| 区块链 面试题:区块链技术中的“区块链浏览器”是什么?有什么作用?

      “谁都了解生存往往比命运还残酷,只是没人愿意认输,我们都在不断赶路,忘记了出路。”     🎯作者主页: 追光者♂🔥          🌸个人简介:   💖[1] 计算机专业硕士研究生💖   🌿[2] 2023年城市之星领跑者TOP1(哈尔滨)🌿   🌟[3] 2022年度博客之星人工智能领域

    2024年02月06日
    浏览(47)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包