重参数化技巧:高斯分布采样

这篇具有很好参考价值的文章主要介绍了重参数化技巧:高斯分布采样。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1、高斯分布采样

我们现在得到了有样本X得到的分布X ~ N( μ \mu μ, σ \sigma σ^2),通过采样我们得到确定的隐变量向量,从而作为解码器的输入。采样这个操作本身是不可导的,但是我们可以通过重参数化技巧,将简单分布的采样结果变换到特定分布中,如此一来则可以对变换过程进行求导。具体而言,我们从标准高斯分布中采样,并将其变换到X ~ N( μ \mu μ, σ \sigma σ^2),过程如下:

ϵ \epsilon ϵ ~ N ( 0 , I ) N(0, I) N(0,I)
Z = μ + σ × ϵ Z=\mu +\sigma × \epsilon Z=μ+σ×ϵ

也就是说,从 N( μ \mu μ, σ \sigma σ^2) 采样 Z Z Z ,等同于从 ϵ \epsilon ϵ ~ N ( 0 , I ) N(0, I) N(0,I)中采样高斯噪声 ϵ \epsilon ϵ,再将其按 Z = μ + σ × ϵ Z=\mu +\sigma × \epsilon Z=μ+σ×ϵ 变换。文章来源地址https://www.toymoban.com/news/detail-542422.html

import torch

def reparametrize(mean,lg_var): # 采样器方法:对方差(lg_var)进行还原,并从高斯分布中采样,将采样数值映射到编码器输出的数据分布中。
        std = lg_var.exp().sqrt()
        # torch.FloatTensor(std.size())的作用是,生成一个与std形状一样的张量。然后,调用该张量的normal_()方法,系统会对该张量中的每个元素在标准高斯空间(均值为0、方差为1)中进行采样。
        eps = torch.FloatTensor(std.size()).normal_() # 随机张量方法normal_(),完成高斯空间的采样过程。
        return eps.mul(std).add_(mean)

到了这里,关于重参数化技巧:高斯分布采样的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 概率论:参数估计——点估计

    首先,我们要知道点估计是什么: 简单来讲,点估计一般就是拿出很多样本来,拿他们的均值和方差之类的当成参数,或者是通过均值和方差计算出他的参数。 简单来说,参数空间就是这个分布的参数可以的取值。 先学习矩估计法: 还记得变量的矩是什么吗?就是E(x^k)。

    2024年02月09日
    浏览(42)
  • 概率论:多维随机变量及分布

    X X X 为随机变量, ∀ x ∈ R , P { X ≤ x } = F ( x ) forall xin R,P{Xle x}=F(x) ∀ x ∈ R , P { X ≤ x } = F ( x ) 设 F ( x ) F(x) F ( x ) 为 X X X 的分布函数,则 (1) 0 ≤ F ( x ) ≤ 1 0le F(x)le1 0 ≤ F ( x ) ≤ 1 (2) F ( x ) F(x) F ( x ) 不减 (3) F ( x ) F(x) F ( x ) 右连续 (4) F ( − ∞ ) = 0 , F ( +

    2024年02月13日
    浏览(41)
  • 【概率论】多维随机变量函数的分布(三)

    设随机变量X,Y相互独立同分布,均服从(0,1)上的均匀分布,则下列随机变量中仍然服从相应区间或区域上均匀分布的是()。 A. X 2 X^2 X

    2024年02月13日
    浏览(43)
  • 概率论:数理统计基本概念——三大分布

    首先是X分布:    n=1的时候,f(y)就是正态分布平方的密度函数,这个可以用y=g(x)的密度函数计算方法来计算。 自由度是什么?: 很显然,几个X加起来,也就是自由度加起来:     接下来是t型分布:   这个T型分布建立在X型分布和标准正态分布上。   最后是F分布:    这

    2024年02月11日
    浏览(47)
  • 【概率论与数理统计】二维随机变量:分布函数(联合分布函数、边缘分布函数)、联合概率密度、边缘概率密度、联合分布律、边缘分布律

    直观理解: 联合概率密度 草帽/山峰 边缘概率密度 切一刀的山峰切面 联合分布函数 切两刀山峰体 边缘分布函数 切一刀山峰体 联合分布律 和 边缘分布律 针对离散型随机变量 二维随机变量  联合分布函数(切两刀山峰体) 边缘分布函数 (切一刀山峰体)    【连续型随

    2024年02月05日
    浏览(35)
  • 机器学习之概率论

            最近,在了解机器学习相关的数学知识,包括线性代数和概率论的知识,今天,回顾了概率论的知识,贴上几张其他博客的关于概率论的图片,记录学习过程。                            

    2024年02月12日
    浏览(42)
  • 概率论-1-概率机器人 Probabilistic Robotics

    基本概念 随机变量 静态的 可以做随机试验 随机过程 动态 离散随机变量 概率质量函数 probability mass function 连续随机变量 概率密度函数 probability density function PDF 联合概率 P ( X = x 且 Y = y ) = P ( x , y ) 若 X 和 Y 独立: P ( x , y ) = P ( x ) P ( y ) P(X=x 且 Y=y) = P(x,y)\\\\ 若 X 和 Y 独立:

    2024年03月22日
    浏览(54)
  • 概率论与数理统计---随机变量的分布

    随机变量 随机变量就是随机事件的数值体现。 例如投色子记录色子的点数,记录的点数其实就是一个随机变量,他是这个点数出现的数值体现。 注意: 随机变量X = X(e) , 是一个单实值函数,每个随机事件的结果只能对应一个随机变量。 X(e)体现的是对随机事件的描述,本质

    2024年02月13日
    浏览(45)
  • 概率论的学习和整理16: 泊松分布(未完成)

    目录 简单的扩展到泊松分布  比较整体的动态过程,增加实验次数时 当二项分布,n很大,p很小的时候,会趋向泊松分布 当n足够大时,二项分布趋向于正态分布。这个结论在概率论中被称为中心极限定理,它是概率论中一个非常重要的定理,广泛应用于各种领域,如金融、

    2024年02月16日
    浏览(46)
  • 概率论与数理统计————3.随机变量及其分布

    设E是一个随机试验,S为样本空间,样本空间的任意样本点e可以通过特定的对应法则X,使得每个样本点都有与之对应的数对应,则称 X=X(e)为随机变量 分布函数: 设X为随机变量,x是任意实数,则事件{Xx}为随机变量X的分布函数,记为F(x) 即: F(x)=P(Xx) (1)几何意

    2024年01月18日
    浏览(40)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包