1基于机器学习
是指选取情感词作为特征词,将文本矩阵化,利用logistic Regression, 朴素贝叶斯(Naive Bayes),支持向量机(SVM)等方法进行分类。最终分类效果取决于训练文本的选择以及正确的情感标注。
在训练过程(a)中,我们的模型学习基于训练样本,将特定输入(即文本)与相应的输出(标签)相关联。 特征提取器将文本输入传输到特征向量中。 将成对的特征向量和标签(例如,正,负或中性)喂给到机器学习算法中以生成模型。
在预测过程(b)中,特征提取器用于将未见过的的文本输入,变换为特征向量。 然后将这些特征向量喂给模型,该模型生成预测标签(正,负或中性)。
参考博主:数据分析学习总结笔记01:情感分析_Lynn Wen的博客-CSDN博客文章来源:https://www.toymoban.com/news/detail-542812.html
————————————————
版权声明:本文为CSDN博主「Lynn Wen」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/weixin_41961559/article/details/105237852文章来源地址https://www.toymoban.com/news/detail-542812.html
到了这里,关于基于机器学习的情感分析的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!