概述
最近在阅读InLong的源码,发现它采用通过JMX+Prometheus进行指标监控。
这里做了下延伸将介绍使用JMX+Prometheus+Grafana进行监控指标展示,这里单独将Metric部分代码抽离出来做介绍。
Java代码使用PrometheusApi统计监控指标
完整代码地址:https://download.csdn.net/download/zhangshenghang/88030454
主要类(使用Prometheus HTTPServer):
public class AgentPrometheusMetricListener extends Collector implements MetricListener {
public static final String DEFAULT_DIMENSION_LABEL = "dimension";
public static final String HYPHEN_SYMBOL = "-";
private static final Logger LOGGER = LoggerFactory.getLogger(AgentPrometheusMetricListener.class);
protected HTTPServer httpServer;
private AgentMetricItem metricItem;
private Map<String, AtomicLong> metricValueMap = new ConcurrentHashMap<>();
private Map<String, MetricItemValue> dimensionMetricValueMap = new ConcurrentHashMap<>();
private List<String> dimensionKeys = new ArrayList<>();//维度key组成的字段列表,即所有监控实体标记@Dimension的字段
public AgentPrometheusMetricListener() {
this.metricItem = new AgentMetricItem();
final MBeanServer mbs = ManagementFactory.getPlatformMBeanServer();
StringBuilder beanName = new StringBuilder();
beanName.append(JMX_DOMAIN).append(DOMAIN_SEPARATOR).append("type=AgentPrometheus");
String strBeanName = beanName.toString();
try {
ObjectName objName = new ObjectName(strBeanName);
mbs.registerMBean(metricItem, objName);
} catch (Exception ex) {
LOGGER.error("exception while register mbean:{},error:{}", strBeanName, ex);
}
// prepare metric value map
metricValueMap.put(M_JOB_RUNNING_COUNT, metricItem.jobRunningCount);
metricValueMap.put(M_JOB_FATAL_COUNT, metricItem.jobFatalCount);
metricValueMap.put(M_TASK_RUNNING_COUNT, metricItem.taskRunningCount);
metricValueMap.put(M_TASK_RETRYING_COUNT, metricItem.taskRetryingCount);
metricValueMap.put(M_TASK_FATAL_COUNT, metricItem.taskFatalCount);
metricValueMap.put(M_SINK_SUCCESS_COUNT, metricItem.sinkSuccessCount);
metricValueMap.put(M_SINK_FAIL_COUNT, metricItem.sinkFailCount);
metricValueMap.put(M_SOURCE_SUCCESS_COUNT, metricItem.sourceSuccessCount);
metricValueMap.put(M_SOURCE_FAIL_COUNT, metricItem.sourceFailCount);
metricValueMap.put(M_PLUGIN_READ_COUNT, metricItem.pluginReadCount);
metricValueMap.put(M_PLUGIN_SEND_COUNT, metricItem.pluginSendCount);
metricValueMap.put(M_PLUGIN_READ_FAIL_COUNT, metricItem.pluginReadFailCount);
metricValueMap.put(M_PLUGIN_SEND_FAIL_COUNT, metricItem.pluginSendFailCount);
metricValueMap.put(M_PLUGIN_READ_SUCCESS_COUNT, metricItem.pluginReadSuccessCount);
metricValueMap.put(M_PLUGIN_SEND_SUCCESS_COUNT, metricItem.pluginSendSuccessCount);
int metricsServerPort = 19090;
try {
this.httpServer = new HTTPServer(metricsServerPort);
this.register();
LOGGER.info("Starting prometheus metrics server on port {}", metricsServerPort);
} catch (IOException e) {
LOGGER.error("exception while register agent prometheus http server,error:{}", e.getMessage());
}
}
@Override
public List<MetricFamilySamples> collect() {
DefaultExports.initialize();
// 在prometheus中命名为agent_total,(_total是CounterMetricFamily自动添加)
CounterMetricFamily totalCounter = new CounterMetricFamily("agent", "metrics_of_agent_node_total",
Arrays.asList(DEFAULT_DIMENSION_LABEL));
totalCounter.addMetric(Arrays.asList(M_JOB_RUNNING_COUNT), metricItem.jobRunningCount.get());
totalCounter.addMetric(Arrays.asList(M_JOB_FATAL_COUNT), metricItem.jobFatalCount.get());
totalCounter.addMetric(Arrays.asList(M_TASK_RUNNING_COUNT), metricItem.taskRunningCount.get());
totalCounter.addMetric(Arrays.asList(M_TASK_RETRYING_COUNT), metricItem.taskRetryingCount.get());
totalCounter.addMetric(Arrays.asList(M_TASK_FATAL_COUNT), metricItem.taskFatalCount.get());
totalCounter.addMetric(Arrays.asList(M_SINK_SUCCESS_COUNT), metricItem.sinkSuccessCount.get());
totalCounter.addMetric(Arrays.asList(M_SINK_FAIL_COUNT), metricItem.sinkFailCount.get());
totalCounter.addMetric(Arrays.asList(M_SOURCE_SUCCESS_COUNT), metricItem.sourceSuccessCount.get());
totalCounter.addMetric(Arrays.asList(M_SOURCE_FAIL_COUNT), metricItem.sourceFailCount.get());
totalCounter.addMetric(Arrays.asList(M_PLUGIN_READ_COUNT), metricItem.pluginReadCount.get());
totalCounter.addMetric(Arrays.asList(M_PLUGIN_SEND_COUNT), metricItem.pluginSendCount.get());
totalCounter.addMetric(Arrays.asList(M_PLUGIN_READ_FAIL_COUNT), metricItem.pluginReadFailCount.get());
totalCounter.addMetric(Arrays.asList(M_PLUGIN_SEND_FAIL_COUNT), metricItem.pluginSendFailCount.get());
totalCounter.addMetric(Arrays.asList(M_PLUGIN_READ_SUCCESS_COUNT), metricItem.pluginReadSuccessCount.get());
totalCounter.addMetric(Arrays.asList(M_PLUGIN_SEND_SUCCESS_COUNT), metricItem.pluginSendSuccessCount.get());
List<MetricFamilySamples> mfs = new ArrayList<>();
mfs.add(totalCounter);
// 返回每个维度的统计
for (Entry<String, MetricItemValue> entry : this.dimensionMetricValueMap.entrySet()) {
MetricItemValue itemValue = entry.getValue();
Map<String, String> dimensionMap = itemValue.getDimensions();
// 取配置文件任务中ID
String pluginId = dimensionMap.getOrDefault(KEY_PLUGIN_ID, HYPHEN_SYMBOL);
String componentName = dimensionMap.getOrDefault(KEY_COMPONENT_NAME, HYPHEN_SYMBOL);
// 统计名称
String counterName = pluginId.equals(HYPHEN_SYMBOL) ? componentName : pluginId;
List<String> dimensionIdKeys = new ArrayList<>();
dimensionIdKeys.add(DEFAULT_DIMENSION_LABEL);
dimensionIdKeys.addAll(dimensionMap.keySet());
// 第一个参数统计名称,第二个参数帮助说明,第三个参数维度确认字段
CounterMetricFamily idCounter = new CounterMetricFamily(counterName,
"metrics_of_agent_dimensions_" + counterName, dimensionIdKeys);
addCounterMetricFamily(M_JOB_RUNNING_COUNT, itemValue, idCounter);
addCounterMetricFamily(M_JOB_FATAL_COUNT, itemValue, idCounter);
addCounterMetricFamily(M_TASK_RUNNING_COUNT, itemValue, idCounter);
addCounterMetricFamily(M_TASK_RETRYING_COUNT, itemValue, idCounter);
addCounterMetricFamily(M_TASK_FATAL_COUNT, itemValue, idCounter);
addCounterMetricFamily(M_SINK_SUCCESS_COUNT, itemValue, idCounter);
addCounterMetricFamily(M_SINK_FAIL_COUNT, itemValue, idCounter);
addCounterMetricFamily(M_SOURCE_SUCCESS_COUNT, itemValue, idCounter);
addCounterMetricFamily(M_SOURCE_FAIL_COUNT, itemValue, idCounter);
addCounterMetricFamily(M_PLUGIN_READ_COUNT, itemValue, idCounter);
addCounterMetricFamily(M_PLUGIN_SEND_COUNT, itemValue, idCounter);
addCounterMetricFamily(M_PLUGIN_READ_FAIL_COUNT, itemValue, idCounter);
addCounterMetricFamily(M_PLUGIN_SEND_FAIL_COUNT, itemValue, idCounter);
addCounterMetricFamily(M_PLUGIN_READ_SUCCESS_COUNT, itemValue, idCounter);
addCounterMetricFamily(M_PLUGIN_SEND_SUCCESS_COUNT, itemValue, idCounter);
mfs.add(idCounter);
}
return mfs;
}
@Override
public void snapshot(String domain, List<MetricItemValue> itemValues) {
System.out.println("domain:" + domain + "metricItem1 = " + JSONUtil.toJsonStr(metricItem));
for (MetricItemValue itemValue : itemValues) {
// 不同dimension的指标,统计求和
for (Entry<String, MetricValue> entry : itemValue.getMetrics().entrySet()) {
String fieldName = entry.getValue().name;
AtomicLong metricValue = this.metricValueMap.get(fieldName);
if (metricValue != null) {
long fieldValue = entry.getValue().value;
metricValue.addAndGet(fieldValue);
}
}
// 获取统计维度唯一标识
String dimensionKey = itemValue.getKey();
//dimensionMetricValue统计维度数量总和
MetricItemValue dimensionMetricValue = this.dimensionMetricValueMap.get(dimensionKey);
if (dimensionMetricValue == null) {//首次进来
dimensionMetricValue = new MetricItemValue(dimensionKey, new ConcurrentHashMap<>(),
new ConcurrentHashMap<>());
this.dimensionMetricValueMap.putIfAbsent(dimensionKey, dimensionMetricValue);
dimensionMetricValue = this.dimensionMetricValueMap.get(dimensionKey);
dimensionMetricValue.getDimensions().putAll(itemValue.getDimensions());
// add prometheus label name
for (Entry<String, String> entry : itemValue.getDimensions().entrySet()) {
if (!this.dimensionKeys.contains(entry.getKey())) {
this.dimensionKeys.add(entry.getKey());
}
}
}
// 遍历具体统计的指标
for (Entry<String, MetricValue> entry : itemValue.getMetrics().entrySet()) {
String fieldName = entry.getValue().name;//统计指标名称
MetricValue metricValue = dimensionMetricValue.getMetrics().get(fieldName);//获取历史统计的数量
if (metricValue == null) {
//首次统计添加
metricValue = MetricValue.of(fieldName, entry.getValue().value);
dimensionMetricValue.getMetrics().put(metricValue.name, metricValue);
continue;
}
//累加本次统计的数量
metricValue.value += entry.getValue().value;
}
}
System.out.println("metricItem2 = " + JSONUtil.toJsonStr(metricItem));
}
private void addCounterMetricFamily(String defaultDimension, MetricItemValue itemValue,
CounterMetricFamily idCounter) {
Map<String, String> dimensionMap = itemValue.getDimensions();
List<String> labelValues = new ArrayList<>(dimensionMap.size() + 1);
labelValues.add(defaultDimension);//首先添加统计维度字段,如:jobRunningCount
for (String key : dimensionMap.keySet()) {
String labelValue = dimensionMap.getOrDefault(key, HYPHEN_SYMBOL);
labelValues.add(labelValue);
}
long value = 0L;
Map<String, MetricValue> metricValueMap = itemValue.getMetrics();
MetricValue metricValue = metricValueMap.get(defaultDimension);
if (metricValue != null) {
value = metricValue.value;
}
idCounter.addMetric(labelValues, value);
}
}
启动后访问绑定端口http://ip:19090/
获取监控内容如下,包括了我们程序中自己监控的信息
# HELP process_cpu_seconds_total Total user and system CPU time spent in seconds.
# TYPE process_cpu_seconds_total counter
process_cpu_seconds_total 12.819136
# HELP process_start_time_seconds Start time of the process since unix epoch in seconds.
# TYPE process_start_time_seconds gauge
process_start_time_seconds 1.688973202094E9
# HELP process_open_fds Number of open file descriptors.
# TYPE process_open_fds gauge
process_open_fds 57.0
# HELP process_max_fds Maximum number of open file descriptors.
# TYPE process_max_fds gauge
process_max_fds 10240.0
# HELP agent_total metrics_of_agent_node_total
# TYPE agent_total counter
agent_total{dimension="jobRunningCount",} 3370.0
agent_total{dimension="jobFatalCount",} 0.0
agent_total{dimension="taskRunningCount",} -90.0
agent_total{dimension="taskRetryingCount",} 0.0
agent_total{dimension="taskFatalCount",} 0.0
agent_total{dimension="sinkSuccessCount",} 0.0
agent_total{dimension="sinkFailCount",} 0.0
agent_total{dimension="sourceSuccessCount",} 0.0
agent_total{dimension="sourceFailCount",} 0.0
agent_total{dimension="pluginReadCount",} 0.0
agent_total{dimension="pluginSendCount",} 6740.0
agent_total{dimension="pluginReadFailCount",} 0.0
agent_total{dimension="pluginSendFailCount",} 0.0
agent_total{dimension="pluginReadSuccessCount",} 0.0
agent_total{dimension="pluginSendSuccessCount",} 0.0
# HELP AServer_total metrics_of_agent_dimensions_AServer
# TYPE AServer_total counter
AServer_total{dimension="jobRunningCount",streamId="streamId",pluginId="AServer",groupId="groupId1",} 1685.0
AServer_total{dimension="jobFatalCount",streamId="streamId",pluginId="AServer",groupId="groupId1",} 0.0
AServer_total{dimension="taskRunningCount",streamId="streamId",pluginId="AServer",groupId="groupId1",} -19.0
AServer_total{dimension="taskRetryingCount",streamId="streamId",pluginId="AServer",groupId="groupId1",} 0.0
AServer_total{dimension="taskFatalCount",streamId="streamId",pluginId="AServer",groupId="groupId1",} 0.0
AServer_total{dimension="sinkSuccessCount",streamId="streamId",pluginId="AServer",groupId="groupId1",} 0.0
AServer_total{dimension="sinkFailCount",streamId="streamId",pluginId="AServer",groupId="groupId1",} 0.0
AServer_total{dimension="sourceSuccessCount",streamId="streamId",pluginId="AServer",groupId="groupId1",} 0.0
AServer_total{dimension="sourceFailCount",streamId="streamId",pluginId="AServer",groupId="groupId1",} 0.0
AServer_total{dimension="pluginReadCount",streamId="streamId",pluginId="AServer",groupId="groupId1",} 0.0
AServer_total{dimension="pluginSendCount",streamId="streamId",pluginId="AServer",groupId="groupId1",} 3370.0
AServer_total{dimension="pluginReadFailCount",streamId="streamId",pluginId="AServer",groupId="groupId1",} 0.0
AServer_total{dimension="pluginSendFailCount",streamId="streamId",pluginId="AServer",groupId="groupId1",} 0.0
AServer_total{dimension="pluginReadSuccessCount",streamId="streamId",pluginId="AServer",groupId="groupId1",} 0.0
AServer_total{dimension="pluginSendSuccessCount",streamId="streamId",pluginId="AServer",groupId="groupId1",} 0.0
# HELP AServer_total metrics_of_agent_dimensions_AServer
# TYPE AServer_total counter
AServer_total{dimension="jobRunningCount",streamId="streamId",pluginId="AServer",groupId="groupId2",} 1685.0
AServer_total{dimension="jobFatalCount",streamId="streamId",pluginId="AServer",groupId="groupId2",} 0.0
AServer_total{dimension="taskRunningCount",streamId="streamId",pluginId="AServer",groupId="groupId2",} -71.0
AServer_total{dimension="taskRetryingCount",streamId="streamId",pluginId="AServer",groupId="groupId2",} 0.0
AServer_total{dimension="taskFatalCount",streamId="streamId",pluginId="AServer",groupId="groupId2",} 0.0
AServer_total{dimension="sinkSuccessCount",streamId="streamId",pluginId="AServer",groupId="groupId2",} 0.0
AServer_total{dimension="sinkFailCount",streamId="streamId",pluginId="AServer",groupId="groupId2",} 0.0
AServer_total{dimension="sourceSuccessCount",streamId="streamId",pluginId="AServer",groupId="groupId2",} 0.0
AServer_total{dimension="sourceFailCount",streamId="streamId",pluginId="AServer",groupId="groupId2",} 0.0
AServer_total{dimension="pluginReadCount",streamId="streamId",pluginId="AServer",groupId="groupId2",} 0.0
AServer_total{dimension="pluginSendCount",streamId="streamId",pluginId="AServer",groupId="groupId2",} 3370.0
AServer_total{dimension="pluginReadFailCount",streamId="streamId",pluginId="AServer",groupId="groupId2",} 0.0
AServer_total{dimension="pluginSendFailCount",streamId="streamId",pluginId="AServer",groupId="groupId2",} 0.0
AServer_total{dimension="pluginReadSuccessCount",streamId="streamId",pluginId="AServer",groupId="groupId2",} 0.0
AServer_total{dimension="pluginSendSuccessCount",streamId="streamId",pluginId="AServer",groupId="groupId2",} 0.0
....
Prometheus
上面通过代码获取到了Prometheus的监控信息,下面我们通过配置Prometheus,在Prometheus中获取到监控指标。
修改Prometheus
配置文件/etc/prometheus/prometheus.yml
将我们程序中开启的端口,添加到配置文件
# my global config
global:
scrape_interval: 15s # Set the scrape interval to every 15 seconds. Default is every 1 minute.
evaluation_interval: 15s # Evaluate rules every 15 seconds. The default is every 1 minute.
# scrape_timeout is set to the global default (10s).
# Alertmanager configuration
alerting:
alertmanagers:
- static_configs:
- targets:
# - alertmanager:9093
# Load rules once and periodically evaluate them according to the global 'evaluation_interval'.
rule_files:
# - "first_rules.yml"
# - "second_rules.yml"
# A scrape configuration containing exactly one endpoint to scrape:
# Here it's Prometheus itself.
scrape_configs:
# The job name is added as a label `job=<job_name>` to any timeseries scraped from this config.
- job_name: "prometheus"
# metrics_path defaults to '/metrics'
# scheme defaults to 'http'.
static_configs:
- targets: ["localhost:9090"]
# 程序中开启的端口
- job_name: "Jast Monitor"
static_configs:
- targets: ['192.168.1.41:19090']
重启Prometheus服务
访问Prometheus进入status->Targets
页面
可以看到我们配置的监控
至此Prometheus已经将我们程序的监控信息捕获到。
Grafana展示
Grafana安装不在这里介绍,自行安装
登录Grafana,添加数据源Data Sources
点击Add data source
选择Prometheus
配置Prometheus地址
拖到最底下,点击Savae & test
,成功会提示Data source is working
创建仪表盘,配置监控
点击Metrics browser
展开
选择展示的监控指标(这里AServer_total和agent_total是我们自己代码中配置的监控信息)
点击Use query
查询出数据展示效果
点击保存可以在Dashboard中查看我们监控指标文章来源:https://www.toymoban.com/news/detail-543900.html
文章来源地址https://www.toymoban.com/news/detail-543900.html
到了这里,关于JMX+Prometheus监控Grafana展示的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!