【调制解调】DSB 双边带调幅

这篇具有很好参考价值的文章主要介绍了【调制解调】DSB 双边带调幅。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

说明

学习数字信号处理算法时整理的学习笔记。同系列文章目录可见 《DSP 学习之路》目录,代码已上传到 Github - ModulationAndDemodulation。本篇介绍 DSB 双边带调幅信号的调制与解调,内附全套 MATLAB 代码。

目录
  • 说明
  • 1. DSB 调制算法
    • 1.1 算法描述
    • 1.2 DSB 信号调制示例
  • 2. DSB 解调算法
    • 2.1 插入载波包络检波法
    • 2.2 相干解调(同步检测)
    • 2.3 数字正交解调
  • 3. DSB 仿真(MATLAB Communications Toolbox)
  • 参考资料
  • 附录代码
    • 附.1 文件 mod_dsb.m
    • 附.2 文件 main_modDSB_example.m
    • 附.3 文件 demod_dsb_method1.m
    • 附.4 文件 main_demodDSB_example1.m
    • 附.5 文件 lpf_filter.m
    • 附.6 文件 demod_dsb_method2.m
    • 附.7 文件 main_demodDSB_example2.m
    • 附.8 文件 demod_dsb_method3.m
    • 附.9 文件 main_demodDSB_example3.m
    • 附.10 文件 main_CommDSB_example.m

1. DSB 调制算法

1.1 算法描述

在 AM 调幅信号中,载波分量并不携带信息,信息完全由边带传送。如果在 AM 调制模型中将直流 \(A_0\) 去掉,即可得到一种高调制效率的调制方式——抑制载波双边带信号(DSB - SC, Double Side Band with Suppressed Carrier),简称双边带信号(DSB),其时域表达式为:

\[s_{DSB}(t)=m(t)cos{\omega_ct} \tag{1} \]

式中:\(m(t)\) 是调制信号(携带要发出去的信息),它可以是确知信号,也可以是随机信号,其均值通常为 0;\(cos{\omega_ct}\) 是载波,\(\omega_c\) 是载波角频率,与载波频率 \(f_c\) 之间的关系为 \(\omega_c=2{\pi}f_c\)。DSB 的频谱与 AM 频谱相近,只是没有了在 \(\pm\omega_c\) 处的 \(\delta\) 函数,对式 \((1)\) 进行傅里叶变换,得到 DSB 信号的频谱(幅度谱)表达式:

\[S_{DSB}(\omega)=\frac{1}{2}\left[M(\omega+\omega_c)+M(\omega-\omega_c)\right] \tag{2} \]

式中,\(M(\omega)\) 是调制信号 \(m(t)\) 的频谱。DSB 信号的特性如下:

  • DSB 信号的频谱由上边带与下边带两部分组成,不存在载波分量,它的带宽仍是基带信号(调制信号)带宽 \(f_H\) 的 2 倍,即 \(B_{DSB}=2f_{H}\),与 AM 信号带宽相同。

    【调制解调】DSB 双边带调幅

  • 由于不存在载波分量,有用功率 \(P_s\) 就是信号总功率 \(P_{DSB}\),即 \(P_s=P_{DSB}\),全部功率都用于信息传输,调制效率 \({\eta_{DSB}}=100\%\)

1.2 DSB 信号调制示例

调制信号 \(m(t)\) 可以是确知信号,也可以是随机信号。当 \(m(t)\) 是确知信号时,不妨假设 \(m(t)\) 的时域表达式如下:

\[m(t) = sin(2{\pi}{f_m}t)+cos({\pi}{f_m}t) \tag{3} \]

各调制参数取值:\(f_m=2500Hz\)\(f_c=20000Hz\)。信号采样率 \(f_s=8{f_c}\),仿真总时长为 \(2s\)。DSB 调制效果如下图所示(为了美观,时域只显示前 500 个点),调制信号 \(m(t)\) 双边幅度谱有四根离散谱线(\({\pm}2500Hz\)\({\pm}1250Hz\)),载波 \(c(t)\) 的双边幅度谱有两根离散谱线(\({\pm}20000Hz\)),DSB 信号有八根离散谱线(\(\pm17500Hz\)\(\pm18750Hz\)\(\pm21250Hz\)\(\pm22500Hz\)),代码详见附录 main_modDSB_example.mmod_dsb.m

【调制解调】DSB 双边带调幅


2. DSB 解调算法

解调是调制的逆过程,其作用是从接收的已调信号中恢复原基带信号(即调制信号)。DSB 信号的包络不再与调制信号 \(m(t)\) 的变化规律一致,因而不能采用简单的包络检波来恢复调制信号,通常采用相干解调的方法来进行解调。另一种方法是,插入很强的载波,使其成为或近似为 AM 信号,则可利用包络检波器恢复调制信号,这种方法被称为插入载波包络检波法,为了保证检波质量,插入的载波振幅应远大于信号的振幅,同时也要求插入的载波与调制载波同频同相。下面介绍三种解调方法并对 1.2 节中的 DSB 信号进行解调。

2.1 插入载波包络检波法

插入幅值为 \(A_0\) 的载波,得到:

\[s_{DSB}(t)+{A_0}cos{\omega_ct}=\left[A_0+m(t)\right]cos{\omega_ct} \tag{4} \]

其中 \(A_0 \geq {\lvert}{m(t)}{\rvert}_{max}\),这样就得到了一个 AM 信号,使用 AM 解调器进行解调即可,步骤如下:

  1. 第一步:加上载波 \({A_0}cos{\omega_ct}\),其中 \(A_0 \geq {\lvert}{m(t)}{\rvert}_{max}\),获得 AM 信号。
  2. 第二步:使用 AM 解调器进行解调。

对 1.2 节中的 DSB 信号,设定信噪比 \(SNR=50dB\),解调效果如下,计算误差,有:\(\sqrt{\sum{{\lvert}m(t_i)-\hat{m}(t_i){\rvert}^2}}/\sqrt{\sum{{\lvert}m(t_i){\rvert}^2}}\approx0.0022\)。更改插入载波的初始相位为 \({\phi_0}=\pi/4,\pi/2\),或者更改插入载波的中心频率为 \(0.8f_c,1.2f_c\) 后,解调效果变差,说明这种方法对插入载波同频同相的要求较高。

【调制解调】DSB 双边带调幅

代码详见 demod_dsb_method1.mmain_demodDSB_example1.m。AM 解调器详见本人同系列博客 【调制解调】AM 调幅。

2.2 相干解调(同步检测)

将 DSB 信号与同频同相的相干载波相乘,得到:

\[\begin{aligned} s_{DSB}(t){\cdot}cos{(\omega_ct)}&=m(t)cos{(\omega_ct)}{\cdot}cos{(\omega_ct)}\\[1em] &=\frac{1}{2}m(t)+\frac{1}{2}m(t)cos(2\omega_ct) \end{aligned} \tag{5} \]

然后通过一个低通滤波器即可获得解调结果,步骤如下:

  1. 第一步:乘以相干载波(即乘以 \(2cos({\omega_ct}+{\phi_0})\),前面的 2 被用来做幅度补偿。
  2. 第二步:低通滤波器滤除高频载波,滤除 \(2{\omega}_c\)

对 1.2 节中的 DSB 信号,设定信噪比 \(SNR=50dB\),解调效果如下,计算误差,有:\(\sqrt{\sum{{\lvert}m(t_i)-\hat{m}(t_i){\rvert}^2}}/\sqrt{\sum{{\lvert}m(t_i){\rvert}^2}}\approx0.0016\)。更改相干载波的初始相位为 \({\phi_0}=\pi/4,\pi/2\) 后,解调幅值发生失真,当与真实相位相差 \(\pi/2\) 时幅值失真最大;但更改相干载波的中心频率为 \(0.8f_c,1.2f_c\) 后,解调效果变得很差,波形完全失真,说明这种方法对相干载波同频同相的要求也较高。

【调制解调】DSB 双边带调幅

代码详见 lpf_filter.mdemod_dsb_method2.mmain_demodDSB_example2.m

2.3 数字正交解调

DSB 数字正交解调一般有以下两个步骤,它与相干解调(同步检测)法是等效的:

  1. 第一步:乘以正交相干载波得到 \({s_I}(t)\)\({s_Q}(t)\),即 \({s_I}(t)=2s(t)cos({\omega_ct}+{\phi_0})\)\({s_Q}(t)=-2s(t)sin({\omega_ct}+{\phi_0})\),前面的 2 被用来做幅度补偿。
  2. 第二步:低通滤波器滤除 \({s_I}(t)\)\({s_Q}(t)\) 中的高频分量,所得的 \(s_I(t)\) 即为解调结果。

对 1.2 节中的 DSB 信号,设定信噪比 \(SNR=50dB\),解调效果如下,计算误差,有:\(\sqrt{\sum{{\lvert}m(t_i)-\hat{m}(t_i){\rvert}^2}}/\sqrt{\sum{{\lvert}m(t_i){\rvert}^2}}\approx0.0016\)。与相干解调(同步检测)一样,这种方法对相干载波同频同相的要求较高。

【调制解调】DSB 双边带调幅

代码详见 lpf_filter.mdemod_dsb_method3.mmain_demodDSB_example3.m


3. DSB 仿真(MATLAB Communications Toolbox)

MATLAB 的 Communications Toolbox 中提供了 AM 调制函数 ammod,高斯白噪声函数 awgn,以及 AM 解调函数 amdemod,可以很方便地完成 DSB 信号仿真,设置 ammodamdemod 的输入参数 carramp = 0 即为 DSB 的调制与解调(carramp 参数的默认值就是 0,不显式设定这个参数也可以)。使用这三个函数实现上面 1.2 节中确知信号 \(m(t)\) 的 DSB 调制解调,调制后加噪声的效果如下:

【调制解调】DSB 双边带调幅

解调效果如下:

【调制解调】DSB 双边带调幅

解调信号与调制信号波形基本重回,计算误差,有:\(\sqrt{\sum{{\lvert}m(t_i)-\hat{m}(t_i){\rvert}^2}}/\sqrt{\sum{{\lvert}m(t_i){\rvert}^2}}\approx0.0025\)。代码详见附录 main_CommDSB_example.m


参考资料

[1] 楼才义,徐建良,杨小牛.软件无线电原理与应用[M].电子工业出版社,2014.

[2] 樊昌信,曹丽娜.通信原理.第7版[M].国防工业出版社,2012.

[3] CSDN - 通信原理之模拟幅度调制(线性调制)详解。文章来源地址https://www.toymoban.com/news/detail-544071.html


附录代码

附.1 文件 mod_dsb.m

function [ sig_dsb ] = mod_dsb(fc, fs, mt, t)
% MOD_DSB        DSB 双边带调幅
% 输入参数:
%       fc      载波中心频率
%       fs      信号采样率
%       mt      调制信号
%       t       采样时间
% 输出参数:
%       sig_dsb DSB 双边带调幅实信号
% @author 木三百川

% 生成信号
ct = cos(2*pi*fc*t);  
sig_dsb = mt.*ct;   % DSB 双边带调幅信号

% 绘图
nfft = length(sig_dsb);
freq = (-nfft/2:nfft/2-1).'*(fs/nfft);
figure;set(gcf,'color','w');
plot_length = min(500, length(sig_dsb));
subplot(3,2,1);
plot(t(1:plot_length), mt(1:plot_length));xlim([t(1),t(plot_length)]);
xlabel('t/s');ylabel('幅度');title('调制信号m(t)');
subplot(3,2,2);
plot(freq, 10*log10(fftshift(abs(fft(mt,nfft)/nfft))+eps));xlim([freq(1),freq(end)]);
xlabel('频率/hz');ylabel('幅度/dB');title('调制信号m(t)双边幅度谱');

subplot(3,2,3);
plot(t(1:plot_length), ct(1:plot_length));xlim([t(1),t(plot_length)]);
xlabel('t/s');ylabel('幅度');title('载波c(t)');
subplot(3,2,4);
plot(freq, 10*log10(fftshift(abs(fft(ct,nfft)/nfft))+eps));xlim([freq(1),freq(end)]);
xlabel('频率/hz');ylabel('幅度/dB');title('载波c(t)双边幅度谱');

subplot(3,2,5);
plot(t(1:plot_length), sig_dsb(1:plot_length));xlim([t(1),t(plot_length)]);
xlabel('t/s');ylabel('幅度');title('DSB双边带调幅信号s(t)');
subplot(3,2,6);
plot(freq, 10*log10(fftshift(abs(fft(sig_dsb,nfft)/nfft))+eps));xlim([freq(1),freq(end)]);
xlabel('频率/hz');ylabel('幅度/dB');title('DSB双边带调幅信号s(t)双边幅度谱');

end

附.2 文件 main_modDSB_example.m

clc;
clear;
close all;
% DSB 调制仿真(调制信号为确知信号)
% @author 木三百川

% 调制参数
fm = 2500;              % 调制信号参数
fc = 20000;             % 载波频率
fs = 8*fc;              % 采样率
total_time = 2;         % 仿真时长,单位:秒

% 采样时间
t = 0:1/fs:total_time-1/fs;

% 调制信号为确知信号
mt = sin(2*pi*fm*t)+cos(pi*fm*t);

% DSB 调制
[ sig_dsb ] = mod_dsb(fc, fs, mt, t);

附.3 文件 demod_dsb_method1.m

function [ sig_dsb_demod ] = demod_dsb_method1(sig_dsb_receive, fc, fs, t, phi0)
% DEMOD_DSB_METHOD1        DSB 插入载波包络检波法
% 输入参数:
%       sig_dsb_receive     DSB 接收信号,行向量
%       fc                  载波中心频率
%       fs                  信号采样率
%       t                   采样时间
%       phi0                载波初始相位
% 输出参数:
%       sig_dsb_demod       解调结果,与 sig_dsb_receive 等长
% @author 木三百川

% 第一步:插入载波
A0 = max(abs(sig_dsb_receive))/0.8;
sig_dsb2am = sig_dsb_receive + A0*cos(2*pi*fc*t+phi0);

% 第二步:使用 AM 解调器进行解调
[ sig_dsb_demod ] = demod_am_method4(sig_dsb2am, fs, t);

end

附.4 文件 main_demodDSB_example1.m

clc;
clear;
close all;
% DSB 解调仿真(调制信号为确知信号,插入载波包络检波法)
% @author 木三百川

% 调制参数
fm = 2500;              % 调制信号参数
fc = 20000;             % 载波频率
fs = 8*fc;              % 采样率
total_time = 2;         % 仿真时长,单位:秒

% 采样时间
t = 0:1/fs:total_time-1/fs;

% 调制信号为确知信号
mt = sin(2*pi*fm*t)+cos(pi*fm*t);

% DSB 调制
[ sig_dsb_send ] = mod_dsb(fc, fs, mt, t);

% 加噪声
snr = 50;               % 信噪比
sig_dsb_receive = awgn(sig_dsb_send, snr, 'measured');

% 插入载波包络检波法
phi0 = 0;
[ sig_dsb_demod ] = demod_dsb_method1(sig_dsb_receive, fc, fs, t, phi0);

% 绘图
nfft = length(sig_dsb_receive);
freq = (-nfft/2:nfft/2-1).'*(fs/nfft);
figure;set(gcf,'color','w');
plot_length = min(500, length(sig_dsb_receive));
subplot(1,2,1);
plot(t(1:plot_length), sig_dsb_receive(1:plot_length));xlim([t(1),t(plot_length)]);
xlabel('t/s');ylabel('幅度');title('DSB接收信号');
subplot(1,2,2);
plot(freq, 10*log10(fftshift(abs(fft(sig_dsb_receive,nfft)/nfft))+eps));xlim([freq(1),freq(end)]);
xlabel('频率/hz');ylabel('幅度/dB');title('DSB接收信号双边幅度谱');

figure;set(gcf,'color','w');
plot(t(1:plot_length), mt(1:plot_length));xlim([t(1),t(plot_length)]);
hold on;
plot(t(1:plot_length), sig_dsb_demod(1:plot_length));xlim([t(1),t(plot_length)]);
xlabel('t/s');ylabel('幅度');title('解调效果');
legend('调制信号','解调信号');

coef = mean(abs(mt))/mean(abs(sig_dsb_demod));
fprintf('norm(调制信号 - %.2f * 解调信号)/norm(调制信号) = %.4f.\n', coef, norm(mt-coef*sig_dsb_demod)/norm(mt));

附.5 文件 lpf_filter.m

function sig_lpf = lpf_filter(sig_data, cutfre)
% LPF_FILTER    自定义理想低通滤波器
% 输入参数:
%       sig_data        待滤波数据
%       cutfre          截止频率,范围 (0,1)
% 输出参数:
%       sig_lpf         低通滤波结果
% @author 木三百川

nfft = length(sig_data);
lidx = round(nfft/2-cutfre*nfft/2);
ridx = nfft - lidx;
sig_fft_lpf = fftshift(fft(sig_data));
sig_fft_lpf([1:lidx,ridx:nfft]) = 0;
sig_lpf = real(ifft(fftshift(sig_fft_lpf)));

end

附.6 文件 demod_dsb_method2.m

function [ sig_dsb_demod ] = demod_dsb_method2(sig_dsb_receive, fc, fs, t, phi0)
% DEMOD_DSB_METHOD2        DSB 相干解调(同步检测)
% 输入参数:
%       sig_dsb_receive     DSB 接收信号,行向量
%       fc                  载波中心频率
%       fs                  信号采样率
%       t                   采样时间
%       phi0                载波初始相位
% 输出参数:
%       sig_dsb_demod       解调结果,与 sig_dsb_receive 等长
% @author 木三百川

% 第一步:乘以相干载波
sig_dsbct = 2*sig_dsb_receive.*cos(2*pi*fc*t+phi0);

% 第二步:低通滤波
sig_dsb_demod = lpf_filter(sig_dsbct, fc/(fs/2));

end

附.7 文件 main_demodDSB_example2.m

clc;
clear;
close all;
% DSB 解调仿真(调制信号为确知信号,相干解调(同步检测))
% @author 木三百川

% 调制参数
fm = 2500;              % 调制信号参数
fc = 20000;             % 载波频率
fs = 8*fc;              % 采样率
total_time = 2;         % 仿真时长,单位:秒

% 采样时间
t = 0:1/fs:total_time-1/fs;

% 调制信号为确知信号
mt = sin(2*pi*fm*t)+cos(pi*fm*t);

% DSB 调制
[ sig_dsb_send ] = mod_dsb(fc, fs, mt, t);

% 加噪声
snr = 50;               % 信噪比
sig_dsb_receive = awgn(sig_dsb_send, snr, 'measured');

% 相干解调(同步检测)
phi0 = 0;
[ sig_dsb_demod ] = demod_dsb_method2(sig_dsb_receive, fc, fs, t, phi0);

% 绘图
nfft = length(sig_dsb_receive);
freq = (-nfft/2:nfft/2-1).'*(fs/nfft);
figure;set(gcf,'color','w');
plot_length = min(500, length(sig_dsb_receive));
subplot(1,2,1);
plot(t(1:plot_length), sig_dsb_receive(1:plot_length));xlim([t(1),t(plot_length)]);
xlabel('t/s');ylabel('幅度');title('DSB接收信号');
subplot(1,2,2);
plot(freq, 10*log10(fftshift(abs(fft(sig_dsb_receive,nfft)/nfft))+eps));xlim([freq(1),freq(end)]);
xlabel('频率/hz');ylabel('幅度/dB');title('DSB接收信号双边幅度谱');

figure;set(gcf,'color','w');
plot(t(1:plot_length), mt(1:plot_length));xlim([t(1),t(plot_length)]);
hold on;
plot(t(1:plot_length), sig_dsb_demod(1:plot_length));xlim([t(1),t(plot_length)]);
xlabel('t/s');ylabel('幅度');title('解调效果');
legend('调制信号','解调信号');

coef = mean(abs(mt))/mean(abs(sig_dsb_demod));
fprintf('norm(调制信号 - %.2f * 解调信号)/norm(调制信号) = %.4f.\n', coef, norm(mt-coef*sig_dsb_demod)/norm(mt));

附.8 文件 demod_dsb_method3.m

function [ sig_dsb_demod ] = demod_dsb_method3(sig_dsb_receive, fc, fs, t, phi0)
% DEMOD_DSB_METHOD3        DSB 数字正交解调,与相干解调(同步检测)是等效的
% 输入参数:
%       sig_dsb_receive     DSB 接收信号,行向量
%       fc                  载波中心频率
%       fs                  信号采样率
%       t                   采样时间
%       phi0                载波初始相位
% 输出参数:
%       sig_dsb_demod       解调结果,与 sig_dsb_receive 等长
% @author 木三百川

% 第一步:乘以正交相干载波
sig_dsb_i = 2*sig_dsb_receive.*cos(2*pi*fc*t+phi0);
sig_dsb_q = -2*sig_dsb_receive.*sin(2*pi*fc*t+phi0);

% 第二步:低通滤波
sig_dsb_i_lpf = lpf_filter(sig_dsb_i, fc/(fs/2));
sig_dsb_q_lpf = lpf_filter(sig_dsb_q, fc/(fs/2));
sig_dsb_demod = sig_dsb_i_lpf;

end

附.9 文件 main_demodDSB_example3.m

clc;
clear;
close all;
% DSB 解调仿真(调制信号为确知信号,数字正交解调)
% @author 木三百川

% 调制参数
fm = 2500;              % 调制信号参数
fc = 20000;             % 载波频率
fs = 8*fc;              % 采样率
total_time = 2;         % 仿真时长,单位:秒

% 采样时间
t = 0:1/fs:total_time-1/fs;

% 调制信号为确知信号
mt = sin(2*pi*fm*t)+cos(pi*fm*t);

% DSB 调制
[ sig_dsb_send ] = mod_dsb(fc, fs, mt, t);

% 加噪声
snr = 50;               % 信噪比
sig_dsb_receive = awgn(sig_dsb_send, snr, 'measured');

% 数字正交解调
phi0 = 0;
[ sig_dsb_demod ] = demod_dsb_method3(sig_dsb_receive, fc, fs, t, phi0);

% 绘图
nfft = length(sig_dsb_receive);
freq = (-nfft/2:nfft/2-1).'*(fs/nfft);
figure;set(gcf,'color','w');
plot_length = min(500, length(sig_dsb_receive));
subplot(1,2,1);
plot(t(1:plot_length), sig_dsb_receive(1:plot_length));xlim([t(1),t(plot_length)]);
xlabel('t/s');ylabel('幅度');title('DSB接收信号');
subplot(1,2,2);
plot(freq, 10*log10(fftshift(abs(fft(sig_dsb_receive,nfft)/nfft))+eps));xlim([freq(1),freq(end)]);
xlabel('频率/hz');ylabel('幅度/dB');title('DSB接收信号双边幅度谱');

figure;set(gcf,'color','w');
plot(t(1:plot_length), mt(1:plot_length));xlim([t(1),t(plot_length)]);
hold on;
plot(t(1:plot_length), sig_dsb_demod(1:plot_length));xlim([t(1),t(plot_length)]);
xlabel('t/s');ylabel('幅度');title('解调效果');
legend('调制信号','解调信号');

coef = mean(abs(mt))/mean(abs(sig_dsb_demod));
fprintf('norm(调制信号 - %.2f * 解调信号)/norm(调制信号) = %.4f.\n', coef, norm(mt-coef*sig_dsb_demod)/norm(mt));

附.10 文件 main_CommDSB_example.m

clc;
clear;
close all;
% DSB 调制解调仿真(使用Communications Toolbox工具箱)
% @author 木三百川

% 调制参数
fm = 2500;              % 调制信号参数
fc = 20000;             % 载波频率
fs = 8*fc;              % 采样率
total_time = 2;         % 仿真时长,单位:秒

% 采样时间
t = 0:1/fs:total_time-1/fs;

% 调制信号为确知信号
mt = sin(2*pi*fm*t)+cos(pi*fm*t);

% DSB 调制
ini_phase = 0;
sig_dsb_send = ammod(mt, fc, fs, ini_phase);

% 加噪声
snr = 50;               % 信噪比
sig_dsb_receive = awgn(sig_dsb_send, snr, 'measured');

% DSB 解调
[ sig_dsb_demod ] = amdemod(sig_dsb_receive, fc, fs, ini_phase);

% 绘图
nfft = length(sig_dsb_receive);
freq = (-nfft/2:nfft/2-1).'*(fs/nfft);
figure;set(gcf,'color','w');
plot_length = min(500, length(sig_dsb_receive));
subplot(1,2,1);
plot(t(1:plot_length), sig_dsb_receive(1:plot_length));xlim([t(1),t(plot_length)]);
xlabel('t/s');ylabel('幅度');title('DSB接收信号');
subplot(1,2,2);
plot(freq, 10*log10(fftshift(abs(fft(sig_dsb_receive,nfft)/nfft))+eps));xlim([freq(1),freq(end)]);
xlabel('频率/hz');ylabel('幅度/dB');title('DSB接收信号双边幅度谱');

figure;set(gcf,'color','w');
plot(t(1:plot_length), mt(1:plot_length));xlim([t(1),t(plot_length)]);
hold on;
plot(t(1:plot_length), sig_dsb_demod(1:plot_length));xlim([t(1),t(plot_length)]);
xlabel('t/s');ylabel('幅度');title('解调效果');
legend('调制信号','解调信号');

coef = mean(abs(mt))/mean(abs(sig_dsb_demod));
fprintf('norm(调制信号 - %.2f * 解调信号)/norm(调制信号) = %.4f.\n', coef, norm(mt-coef*sig_dsb_demod)/norm(mt));

到了这里,关于【调制解调】DSB 双边带调幅的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 数字带通调制系统实验-BPSK的调制与解调

    1、实验原理 BPSK的调制原理 在二进制数字调制中,当正弦载波的相位随二进制数字基带信号离散变化 时,则产生二进制移相键控(2PSK)信号。通常用已调信号载波的0度和180 度分别表示二进制数字基带信号的1和0.二进制移相键控信号的时域表达式为 这种以载波的不同相位直接

    2024年02月02日
    浏览(63)
  • GMSK调制与解调学习记录

    GMSK(高斯最小频移键控)信号是在MSK(最小频移键控)信号的基础上得到的。而MSK信号本质上为连续相位调制(CPM)信号,是一种特殊的连续相位的频移键控 (CPFSK)。其最大频移为比特速率的1/4,即MSK是调制系数为0.5的连续相位的FSK。在FSK调制方式中,根据原始的信息序列,相

    2024年02月03日
    浏览(33)
  • 通信原理板块——幅度调制(线性调制)原理(AM、DSB、SSB、VSB)

    微信公众号上线,搜索公众号 小灰灰的FPGA ,关注可获取相关源码,定期更新有关FPGA的项目以及开源项目源码,包括但不限于各类检测芯片驱动、低速接口驱动、高速接口驱动、数据信号处理、图像处理以及AXI总线等 1、调制的定义、目的及分类 (1)调制——将信号形式转换成

    2024年02月04日
    浏览(41)
  • FM调制解调---FPGA

            实验通过编写一个DMA读模块获取FM调制的数据源,DMA模块的实现是基于AXI协议。因为在数据的传输中,Xilinx提供的官方DMA IP核在传输完一次突发数据后需要在PS 端重新启动一次都或者写操作,如此的话,在进行大量数据的传输工作时,尤其是对DDR 不同地址区域同时进

    2024年02月11日
    浏览(43)
  • 【调制解调】FM 调频

    学习数字信号处理算法时整理的学习笔记。同系列文章目录可见 《DSP 学习之路》目录,代码已上传到 Github - ModulationAndDemodulation。本篇介绍 FM 调频信号的调制与解调,内附全套 MATLAB 代码。 目录 说明 1. FM 调制算法 1.1 FM 信号描述 1.2 FM 信号的带宽与功率分配 1.3 FM 信号的调制

    2024年02月16日
    浏览(38)
  • 2ASK调制解调实验

    一,数字信号的键控调制 在数字调制技术中,由于数字信号具有离散值的特点,因此数字调制技术通常有两种 方法:一是利用模拟调制的方法去实现数字调制,即把数字调制看成是模拟调制的一个特 例,把数字基带信号当做模拟信号的特殊情况来处理;二是利用数字信号的

    2023年04月08日
    浏览(40)
  • Verilog正交调制解调

    了解正交调制解调的原理和实现方法 学会 I P IP I P 核的使用 学会利用 m o d e s i m modesim m o d es im 进行仿真 相关参数: (1)直线阵通道数: 96 96 96 (2)信号频率: 10 k H z 10kHz 10 k Hz (3)采样率: 400 k H z 400kHz 400 k Hz (4)低通滤波器阶数: 64 64 64 (5)低通滤波器截止频率:

    2023年04月15日
    浏览(67)
  • 【调制解调】PM 调相

    学习数字信号处理算法时整理的学习笔记。同系列文章目录可见 《DSP 学习之路》目录,代码已上传到 Github - ModulationAndDemodulation。本篇介绍 PM 调相信号的调制与解调,内附全套 MATLAB 代码。 目录 说明 1. PM 调制算法 1.1 PM 信号描述 1.2 PM 信号调制示例 2. PM 解调算法 2.1 FM 解调

    2024年02月16日
    浏览(40)
  • 关于64QAM调制,软硬解调详解

    本文主要梳理记录一下64QAM的调制原理,以及软解调和硬解调的区别。 64QAM调制是M-QAM调制的一种,属于正交振幅调制,即采用幅度相位相结合的调制方式使得一个码片包含更多bit的信息。 64QAM调制可得到64个不同的波形,分别代表000000,000001…这也意味着一共有64种符号,一

    2023年04月22日
    浏览(45)
  • 利用matlab实现AM调制解调

    基本原理 幅度调制(AM)是用调制信号去控制高频载波的振幅,使之随调制信号作线性变化的过程。     上图给出了AM调制解调的原理模型,从图中可知发送信号m(t)和直流分量A 0 叠 加 后乘以高频载波cos(w c t)后即可形成AM调制信号。 具体时域波形为   对应的频谱波形为   在解

    2023年04月08日
    浏览(44)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包