【NLP】哪些现成的“已预先训练的语言模型”可以使用

这篇具有很好参考价值的文章主要介绍了【NLP】哪些现成的“已预先训练的语言模型”可以使用。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

 一、说明

        预先训练的通用语言表示模型有着如此悠久的历史,具有巨大的影响,我们理所当然地认为它们是所有NLP任务的完全100%必要基础。有两个独立的步进函数创新推动了所有NLP任务的准确性:(1)统计语言模型,如Word2Vec和GloVe,以及最近的(2)神经语言模型,如BERT,ELMo和最近的BLOOM。在建模工作流开始时插入预先训练的神经语言模型

文章来源地址https://www.toymoban.com/news/detail-544340.html

到了这里,关于【NLP】哪些现成的“已预先训练的语言模型”可以使用的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 自然语言处理 Paddle NLP - 基于预训练模型完成实体关系抽取

    基础 自然语言处理(NLP) 自然语言处理PaddleNLP-词向量应用展示 自然语言处理(NLP)-前预训练时代的自监督学习 自然语言处理PaddleNLP-预训练语言模型及应用 自然语言处理PaddleNLP-文本语义相似度计算(ERNIE-Gram) 自然语言处理PaddleNLP-词法分析技术及其应用 自然语言处理Pa

    2024年02月10日
    浏览(48)
  • 7个顶级开源数据集来训练自然语言处理(NLP)和文本模型

    推荐:使用 NSDT场景编辑器快速助你搭建可二次编辑的3D应用场景 NLP现在是一个令人兴奋的领域,特别是在像AutoNLP这样的用例中,但很难掌握。开始使用NLP的主要问题是缺乏适当的指导和该领域的过度广度。很容易迷失在各种论文和代码中,试图吸收所有内容。 要意识到的是

    2024年02月13日
    浏览(57)
  • 【自然语言处理NLP】Bert预训练模型、Bert上搭建CNN、LSTM模型的输入、输出详解

    Bert模型的输入 context 张量需要满足以下要求: 张量形状: context 应为二维张量,形状为 [batch_size, sequence_length] ,其中 batch_size 是输入样本的批量大小, sequence_length 是输入序列的长度。 数据类型: context 的数据类型应为整数类型,如 torch.LongTensor 。 值范围: context 中的值应

    2024年02月11日
    浏览(41)
  • 【NLP,Huggingface,Colab】使用 Trainer 训练模型,并保存模型参数

    Colab 的使用 Huggingface 官网和一些基础API 首先,建议 保存代码到 VSCode ,这样双击关键类, F12 可以进入查看具体接口参数及其含义。 然后,建议 代码在 Colab 运行 ,第一个是有默认 GPU 资源,第二个是否则会产生各种 ConnectionError, OSError 等错误… 重点可以看注释。自行摸索了

    2024年02月13日
    浏览(34)
  • 基于Bert+Attention+LSTM智能校园知识图谱问答推荐系统——NLP自然语言处理算法应用(含Python全部工程源码及训练模型)+数据集

    这个项目充分利用了Google的Bert模型,这是一种基于Attention的大规模语料预训练模型,以及LSTM命名实体识别网络。项目的目标是设计一套通用的问答系统处理逻辑,以实现智能问答任务。 首先,我们采用了Bert模型,这是一种在自然语言处理领域非常强大的预训练模型。它具备

    2024年02月09日
    浏览(63)
  • AI大模型预先学习笔记二:prompt提问大模型、langchain使用大模型框架、fine tune微调大模型

    1)环境准备 ①安装OpenAI库 附加 安装来源 ②生成API key ③设定本地的环境变量 ④代码的准备工作 ⑤在代码运用prompt(简单提问和返回) 2)交互代码的参数备注 temperature:随机性(从0到2可以调节,回答天马行空变化大可以选2) model:跟什么类型的model互动 role:(定义交互

    2024年01月17日
    浏览(46)
  • 微调预训练的 NLP 模型

    动动发财的小手,点个赞吧! 针对任何领域微调预训练 NLP 模型的分步指南 在当今世界,预训练 NLP 模型的可用性极大地简化了使用深度学习技术对文本数据的解释。然而,虽然这些模型在一般任务中表现出色,但它们往往缺乏对特定领域的适应性。 本综合指南 [1] 旨在引导

    2024年02月13日
    浏览(36)
  • 自然语言处理(NLP)一直是人工智能领域的一项重要任务,其涉及到从文本中提取特征、组织数据、训练模型等诸多复杂任务。如何有效地进行文本理解和分析?

    作者:禅与计算机程序设计艺术 自然语言处理(NLP)一直是人工智能领域的一项重要任务,其涉及到从文本中提取特征、组织数据、训练模型等诸多复杂任务。如何有效地进行文本理解和分析,成为一个重要研究课题。近年来,随着计算能力的提升和硬件性能的增强,大规模

    2024年02月09日
    浏览(66)
  • NLP预训练模型超大规模探索

      总共从四方面来进行比较。 第一个方面, 高层次方法(自监督的预训练方法)对比 ,总共三种方式。 语言模型式 ,就是 GPT-2 那种方式,从左到右预测; BERT-style 式 ,就是像 BERT 一样将一部分给破坏掉,然后还原出来; Deshuffling (顺序还原)式 ,就是将文本打乱,然后

    2024年02月11日
    浏览(34)
  • 带你熟悉NLP预训练模型:BERT

    本文分享自华为云社区《【昇思技术公开课笔记-大模型】Bert理论知识》,作者: JeffDing。 语言模型演变经历的几个阶段 word2vec/Glove将离散的文本数据转换为固定长度的静态词向量,后根据下游任务训练不同的语言模型 ELMo预训练模型将文本数据结合上下文信息,转换为动态

    2024年01月22日
    浏览(72)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包