第5章 状态空间模型和卡尔曼滤波
状态空间模型通常试图描述具有两个特征的现象
-
有一个底层系统具有时变的动态关系,因此系统在时间上的“状态”t 与系统在时间的状态t−1有关 .如果我们知道系统在时间上的状态t−1 ,那么我们就有了我们需要知道的一切,以便对当时的状态进行推断或预测t .
-
我们无法观察到系统的真实底层状态,而是观察它的嘈杂版本。
这两个特征导致我们指定状态方程,它描述了系统如何从一个时间点演变到下一个时间点,以及观察方程,它描述了底层状态如何转换(添加噪声)为我们直接测量的东西。文章来源:https://www.toymoban.com/news/detail-544358.html
假设有一个初始状态 .为t=1,2,... 我们希望能够估计后续状态文章来源地址https://www.toymoban.com/news/detail-544358.html
到了这里,关于【数据挖掘】时间序列教程【九】的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!