RedissonClient 分布式锁

这篇具有很好参考价值的文章主要介绍了RedissonClient 分布式锁。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

package com.xu.redis.task;

import cn.hutool.core.date.DateUtil;
import lombok.extern.log4j.Log4j2;
import org.redisson.api.RLock;
import org.redisson.api.RedissonClient;
import org.springframework.scheduling.annotation.EnableScheduling;
import org.springframework.scheduling.annotation.Scheduled;
import org.springframework.stereotype.Component;

import javax.annotation.Resource;
import java.util.Date;
import java.util.concurrent.TimeUnit;

/**
 * @author xuyq
 */
@Log4j2
@Component
@EnableScheduling
public class TestTask {

    @Resource
    private RedissonClient client;

    private final static String LOCKS = "DISTRIBUTED_LOCKS";

    @Scheduled(cron = "0/10 * * * * ?")
    public void test() {
        RLock lock = client.getLock(LOCKS);
        try {
            // 尝试1秒内获取锁,如果获取到了,最长60秒自动释放
            boolean tryLock = lock.tryLock(1L, 60L, TimeUnit.SECONDS);
            if (tryLock) {
                // TODO: 获取锁成功,处理业务
                System.out.println("获取锁成功" + DateUtil.format(new Date(), "yyyy-MM-dd HH:mm:ss"));
            }
        } catch (Exception e) {
            log.error("加锁异常!", e);
        } finally {
            if (lock.isLocked() && lock.isHeldByCurrentThread()) {
                lock.unlock();
            }
        }
    }

}

文章来源地址https://www.toymoban.com/news/detail-545506.html

到了这里,关于RedissonClient 分布式锁的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 分析型数据库:分布式分析型数据库

    分析型数据库的另外一个发展方向就是以分布式技术来代替MPP的并行计算,一方面分布式技术比MPP有更好的可扩展性,对底层的异构软硬件支持度更好,可以解决MPP数据库的几个关键架构问题。本文介绍分布式分析型数据库。 — 背景介绍— 目前在分布式分析型数据库领域,

    2023年04月14日
    浏览(56)
  • RedissonClient妙用-分布式布隆过滤器

    目录 布隆过滤器介绍 布隆过滤器的落地应用场景 高并发处理  多个过滤器平滑切换 分析总结 布隆过滤器(Bloom Filter)是1970年由布隆提出的。它实际上是一个很长的二进制向量和一系列随机映射函数。布隆过滤器可以用于检索一个元素是否在一个集合中。 它的优点是空间效

    2024年02月21日
    浏览(23)
  • 分布式数据库HBase

    HBase是一个高可靠、高性能、 面向列 、可伸缩的分布式数据库,是谷歌BigTable的开源实现,主要用来存储非结构化和把结构化的松散数据。 HBase的目标是处理非常庞大的表,可以通过水平扩展的方式,利用 廉价计算机集群 处理由超过10亿行数据和数百万列元素组成的数据表。

    2024年02月09日
    浏览(55)
  • 【大数据】分布式数据库HBase

    目录 1.概述 1.1.前言 1.2.数据模型 1.3.列式存储的优势 2.实现原理 2.1.region 2.2.LSM树 2.3.完整读写过程 2.4.master的作用 本文式作者大数据系列专栏中的一篇文章,按照专栏来阅读,循序渐进能更好的理解,专栏地址: https://blog.csdn.net/joker_zjn/category_12631789.html?spm=1001.2014.3001.5482 当

    2024年04月27日
    浏览(46)
  • 分布式数据库-事务一致性

    version: v-2023060601 author: 路__ 分布式数据库的“强一致性”应该包含两个方面: serializability(串行) and linearizability(线性一致) ,上述图为“Highly Available Transactions: Virtues and Limitations”论文中对于一致性模型的介绍。图中箭头表示一致性模型之间的关系。对于异步网络上的分

    2024年02月08日
    浏览(51)
  • 分布式数据库NoSQL(二)——MongoDB 数据库基本操作

    MongoDB 是一个基于分布式文件存储的数据库。由 C++ 语言编写。旨在为 WEB 应用提供可扩展的高性能数据存储解决方案。 MongoDB 是一个介于关系数据库和非关系数据库之间的产品,是非关系数据库当中功能最丰富,最像关系数据库的。它支持的数据结构非常松散,是类似 json 的

    2024年02月06日
    浏览(49)
  • 聊聊分布式 SQL 数据库Doris(五)

    阅读 Doris SQL 原理解析,总结下Doris中SQL解析流程: 词法识别:解析原始SQL文本,拆分token 语法识别:将token转换成AST 单机逻辑查询计划:将AST经过一系列的优化(比如,谓词下推等)成查询计划,提高执行性能与效率。 分布式逻辑查询计划:根据分布式环境(数据分布信息

    2024年02月05日
    浏览(52)
  • 聊聊分布式 SQL 数据库Doris(四)

    FE层的架构都能在网上找到说明. 但BE层的架构模式、一致性保障、与FE层之间的请求逻辑,数据传输逻辑等,我个人暂时没有找到相应的博客说明这些的。当然这些是我个人在学习与使用Doris过程中,对内部交互逻辑与实现感兴趣才有这些疑问. 还好现在有GPT这类大模型,有了

    2024年02月05日
    浏览(57)
  • 分布式数据库Apache Doris简易体验

    📢📢📢📣📣📣 哈喽!大家好,我是【IT邦德】,江湖人称jeames007,10余年DBA及大数据工作经验 一位上进心十足的【大数据领域博主】!😜😜😜 中国DBA联盟(ACDU)成员,目前服务于工业互联网 擅长主流Oracle、MySQL、PG、高斯及Greenplum运维开发,备份恢复,安装迁移,性能优

    2024年02月06日
    浏览(58)
  • 聊聊分布式 SQL 数据库Doris(七)

    Doris的存储结构是类似LSM-Tree设计的,因此很多方面都是通用的,先阅读了解LSM相关的知识,再看Doris的底层存储与读取流程会清晰透彻很多,LSM基本知识如下: 原理:把各种数据先用log等形式组织在内存中(该数据结构称为MemTable,且有序);到达一定数据量后再批量merge写入磁

    2024年02月05日
    浏览(47)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包