数学建模题目可以分为四类:
1.评价类问题
2.运筹优化类问题
3.预测类问题
4.机理分析类问题(人口模型/物理学/微分方程等)
国赛中,优化类问题是一定会出。然后是评价类也是一定会出。其余连也会出现在某个题中。以近几年的一些题型做分析。
2019年国赛题型和算法
- A题(评价优化类):目标规划模型、微分方程模型、差分法
- B题(机理分析类):欧拉刚体旋转定理、模拟退火算法、动力学方程、二阶微分方程
- C题(评价优化类):目标优化、排队论、蒙特卡洛模拟
2020年国赛题型和算法
- A题(机理分析类):热传导方程、差分法、多目标优化、模拟退火算法
- B题(优化):蒙特卡洛模型、动态规划、博弈论、马尔可夫链
- C题(优化):梯度下降法、主成分分析、遗传算法、多目标规划
2021年国赛题型和算法
- A题(机理分析类):反射定律、优化算法
- B题(评价优化类):回归分析、层次分析法、模糊综合评价法等
- C题(评价优化类):量化分析、目标规划优化或群智能算法(粒子群法、遗传算法等)
国赛优秀论文
这里是近几十年的数模优秀论文
链接:https://pan.baidu.com/s/13iRdq1AbSwE83L1gbqydJQ?pwd=73ds
提取码:73ds
这么多要看完吗?当然不可能!我的建议:
- 认真阅读两到三篇论文,研究他们的方法,能不能复现出来。
- 如果是写论文的同学,看看它们的这些论文格式,你能不能写出来。
当你们队伍能够独立复现一篇优秀论文的时候,你们就一定能获奖了,这一步一定要做!国赛前一定要演练。
模型总结
评价模型:层次分析、 Topsis(优劣解距离法)、 模糊综合评价
预测分析模型:微分方程模型、 回归分析、时间序列、马尔可夫、神经网络、插值拟合、 灰色预测模型
优化模型:数学规划模型(多目标、单目标、 0-1 整数规划等)、复杂网络优化、排队论与计算机仿真、图论:最短距离与最大流
数理统计模型:多元分析(主成分分析、聚类分析、因子分析、判别分析、典型相关性分析等)、相关回归分析、假设检验、方差检验、贝叶斯统计
分类与判别算法:距离聚类(系统聚类)、关联性聚类,层次聚类、贝叶斯分类与判别、 SVM 支持向量机、决策树、极限学习机
重要的算法:蒙特卡罗算法、数据处理算法(数据拟合、参数估计、插值等)、规划算法(线性规划、整数规划、多元规划、二次规划等)、图论算法、计算机经典算法(动态规划、回溯搜索、分治算法、分支定界等)、最优化理论的三大非经典算法(模拟退火法、神经网络、遗传算法)、网格算法和穷举法、元胞自动机。文章来源:https://www.toymoban.com/news/detail-546264.html
需要数模辅导可以私聊我的。最后,祝愿各位获奖~我是川川文章来源地址https://www.toymoban.com/news/detail-546264.html
到了这里,关于数学建模国赛题型和获奖策略的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!