Warning: Grad strides do not match bucket view strides pytorch利用DDP报错

这篇具有很好参考价值的文章主要介绍了Warning: Grad strides do not match bucket view strides pytorch利用DDP报错。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

遇到报错: [W reducer.cpp:362] Warning: Grad strides do not match bucket view strides. This may indicate grad was not created according to the gradient layout contract, or that the param’s strides changed since DDP was constructed. This is not an error, but may impair performance.

机翻:警告。梯度与桶状视图的梯度不一致。这可能表明grad没有按照梯度布局合同创建,或者参数的步长在DDP构建后发生了变化。 这不是一个错误,但可能影响性能。

Warning: Grad strides do not match bucket view strides pytorch利用DDP报错,神经网络,pytorch,人工智能,python

方法1:
Github的issue:Grad strides do not match bucket view strides.#47163
pytorch利用DDP进行加速的报错问题
在transpose或者permute后面加 .contiguous()
但是加了之后还是有警告
Warning: Grad strides do not match bucket view strides pytorch利用DDP报错,神经网络,pytorch,人工智能,python

方法2:
类似于x = x[:, :H, :W, :]这种切片的操作
改成:

x = x[:, :H, :W, :].contiguous()文章来源地址https://www.toymoban.com/news/detail-547041.html

到了这里,关于Warning: Grad strides do not match bucket view strides pytorch利用DDP报错的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Warning: You are using macOS 13.We do not provide support for this pre-release version.

    安装git 报错 brew install git 解决方法: 直接根据提示安装: xcode-select --install 接着安装 git   brew install git  git 安装成功 

    2024年02月12日
    浏览(42)
  • error: (-209:Sizes of input arguments do not match) The operation is neither ‘array op array‘ (where

    作者:非妃是公主 专栏:《计算机视觉》 个性签:顺境不惰,逆境不馁,以心制境,万事可成。——曾国藩 Cannot find reference ‘imread‘ in ‘ init .py‘ error: (-209:Sizes of input arguments do not match) The operation is neither ‘array op array‘ (where cs231n-2022-01 Assignments1-numpy的使用 ModuleNotFound

    2024年02月11日
    浏览(54)
  • Pytorch autograd.grad与autograd.backward详解

    平时在写 Pytorch 训练脚本时,都是下面这种无脑按步骤走: 对用户屏蔽底层自动微分的细节,使得用户能够根据简单的几个 API 将模型训练起来。这对于初学者当然是极好的,也是 Pytorch 这几年一跃成为最流行的深度学习框架的主要原因:易用性。 但是,我们有时需要深究自

    2023年04月09日
    浏览(42)
  • Pytorch使用Grad-CAM绘制热力图

    原理与代码学习自B站霹雳吧啦Wz老师 使用grad_cam对不同预测目标的图像做activate图。 效果见下图。 使用的是自己训练的MobileNetV2 需要模型feature的最后一层,模型训练权重。 代码如下: 还有别的图的效果。总之没有很精细,但也不错了。 大概就是在将本张图片分为感兴趣类

    2024年02月12日
    浏览(43)
  • 特殊的bug:element 0 of tensors does not require grad and does not have a grad_fn

    很多帖子都说了,设置requires_grad_()就行。 但是我这次遇到的不一样,设置了都不行。 我是这种情况,在前面设置了 torch.no_grad(): ,又在这个的作用域下进行了 requires_grad_() ,这是不起作用的。 简单版: 这样子直接看,傻瓜都不会犯错。而我这个就比较隐蔽了。。。 我的:

    2024年02月03日
    浏览(43)
  • Grad-CAM的详细介绍和Pytorch代码实现

    Grad-CAM (Gradient-weighted Class Activation Mapping) 是一种可视化深度神经网络中哪些部分对于预测结果贡献最大的技术。它能够定位到特定的图像区域,从而使得神经网络的决策过程更加可解释和可视化。 Grad-CAM 的基本思想是,在神经网络中,最后一个卷积层的输出特征图对于分类结

    2023年04月19日
    浏览(36)
  • 类别激活热力图grad-cam(pytorch)实战跑图

    类激活热力图:用于检查图像哪一部分对模型的最终输出有更大的贡献。具体某个类别对应到图片的那个区域响应最大,也就是对该类别的识别贡献最大 pytorch-grad-cam库代码GitHub代码 如果只想跑个图的话不用下! 作用:一是清晰直观的看看到底影响检测结果的特征;而是cv论

    2024年02月07日
    浏览(38)
  • 分类任务使用Pytorch实现Grad-CAM绘制热力图

    对于深度学习网络,在我们指定数据集类别的情况下,Grad-CAM能够绘制出相应的热力图,让我们能够非常直观的看出网络关注的主要区域与特征是什么。本文主要记录在绘制热力图过程中,自己碰到的一些实际问题,希望能对小伙伴们有所帮助。 以下是本文的参考视频和代码

    2024年02月04日
    浏览(49)
  • 深入理解PyTorch中的train()、eval()和no_grad()

    ❤️觉得内容不错的话,欢迎点赞收藏加关注😊😊😊,后续会继续输入更多优质内容❤️ 👉有问题欢迎大家加关注私戳或者评论(包括但不限于NLP算法相关,linux学习相关,读研读博相关......)👈 (封面图由文心一格生成) 在PyTorch中,train()、eval()和no_grad()是三个非常重

    2023年04月08日
    浏览(47)
  • pytorch | loss不收敛或者训练中梯度grad为None的问题

    原因定位: https://blog.csdn.net/weixin_44231148/article/details/107240840 Pytorch中自定义网络参数,存在梯度但不进行更新 - 漱石的文章 - 知乎 https://zhuanlan.zhihu.com/p/92729376 https://zhuanlan.zhihu.com/p/508458545 介绍hooks: https://zhuanlan.zhihu.com/p/553627695 https://medium.com/analytics-vidhya/pytorch-hooks-5909c7636

    2024年02月08日
    浏览(59)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包