Redis 的 LRU 与 LFU 算法实现

这篇具有很好参考价值的文章主要介绍了Redis 的 LRU 与 LFU 算法实现。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、前言

原文地址
Redis是一款基于内存的高性能NoSQL数据库,数据都缓存在内存里, 这使得Redis可以每秒轻松地处理数万的读写请求。
相对于磁盘的容量,内存的空间一般都是有限的,为了避免Redis耗尽宿主机的内存空间,Redis内部实现了一套复杂的缓存淘汰策略来管控内存使用量。
Redis 4.0版本开始就提供了8种内存淘汰策略,其中4种都是基于LRU或LFU算法实现的,本文就这两种算法的Redis实现进行了详细的介绍,并阐述其优劣特性。

二、Redis的LRU实现

在介绍Redis LRU算法实现之前,我们先简单介绍一下原生的LRU算法。

2.1 LRU算法原理

LRU(The Least Recently Used)是最经典的一款缓存淘汰算法,其原理是 :如果一个数据在最近一段时间没有被访问到,那么在将来它被访问的可能性也很低,当数据所占据的空间达到一定阈值时,这个最少被访问的数据将被淘汰掉。
如今,LRU算法广泛应用在诸多系统内,例如Linux内核页表交换,MySQL Buffer Pool缓存页替换,以及Redis数据淘汰策略。
以下是一个LRU算法示意图:

  1. 向一个缓存空间依次插入三个数据A/B/C,填满了缓存空间;
  2. 读取数据A一次,按照访问时间排序,数据A被移动到缓存头部;
  3. 插入数据D的时候,由于缓存空间已满,触发了LRU的淘汰策略,数据B被移出,缓存空间只保留了D/A/C。
    Redis 的 LRU 与 LFU 算法实现,Redis数据库,redis,算法,数据库,linux,运维
    一般而言,LRU算法的数据结构不会如示意图那样,仅使用简单的队列或链表去缓存数据,而是会采用Hash表 + 双向链表的结构,利用Hash表确保数据查找的时间复杂度是O(1),双向链表又可以使数据插入/删除等操作也是O(1)。
    Redis 的 LRU 与 LFU 算法实现,Redis数据库,redis,算法,数据库,linux,运维
    如果你很熟悉Redis的数据类型,你会发现这个LRU的数据结构与ZSET类型OBJ_ENCODING_SKIPLIST编码结构相似,只是LRU数据排序方式更简单一些。

2.2 Redis LRU算法实现

按照官方文档的介绍,Redis所实现的是一种近似的LRU算法,每次随机选取一批数据进行LRU淘汰,而不是针对所有的数据,通过牺牲部分准确率来提高LRU算法的执行效率。
Redis内部只使用Hash表缓存了数据,并没有创建一个专门针对LRU算法的双向链表,之所以这样处理也是因为以下几个原因:
● 筛选规则,Redis是随机抽取一批数据去按照淘汰策略排序,不再需要对所有数据排序;
● 性能问题,每次数据访问都可能涉及数据移位,性能会有少许损失;
● 内存问题,Redis对内存的使用一向很“抠门”,数据结构都很精简,尽量不使用复杂的数据结构管理数据;
● 策略配置,如果线上Redis实例动态修改淘汰策略会触发全部数据的结构性改变,这个Redis系统无法承受的。
redisObject是Redis核心的底层数据结构,成员变量lru字段用于记录了此key最近一次被访问的LRU时钟(server.lruclock),每次Key被访问或修改都会引起lru字段的更新。

#define LRU_BITS 24
 
typedef struct redisObject {
    unsigned type:4;
    unsigned encoding:4;
    unsigned lru:LRU_BITS; /* LRU time (relative to global lru_clock) or
                            * LFU data (least significant 8 bits frequency
                            * and most significant 16 bits access time). */
    int refcount;
    void *ptr;
} robj;

默认的LRU时钟单位是秒,可以修改LRU_CLOCK_RESOLUTION宏来改变单位,LRU时钟更新的频率也和server.hz参数有关。

unsigned int LRU_CLOCK(void) {
    unsigned int lruclock;
    if (1000/server.hz <= LRU_CLOCK_RESOLUTION) {
        atomicGet(server.lruclock,lruclock);
    } else {
        lruclock = getLRUClock();
    }
    return lruclock;
}

由于lru字段仅占用了24bit的空间,按秒为单位也只能存储194天,所以可能会出现一个意想不到的结果,即间隔194天访问Key后标记的时间戳一样,Redis LRU淘汰策略局部失效。

2.3 LRU算法缺陷

LRU算法仅关注数据的访问时间或访问顺序,忽略了访问次数的价值,在淘汰数据过程中可能会淘汰掉热点数据。
如下图所示,时间轴自左向右,数据A/B/C在同一段时间内被分别访问的数次。数据C是最近一次访问的数据,按照LRU算法排列数据的热度是C>B>A,而数据的真实热度是B>A>C。
Redis 的 LRU 与 LFU 算法实现,Redis数据库,redis,算法,数据库,linux,运维

这个是LRU算法的原理性问题,自然也会在Redis 近似LRU算法中呈现,为了解决这个问题衍生出来LFU算法。

三、Redis的LFU实现

3.1 LFU算法原理

LFU(Least frequently used)即最不频繁访问,其原理是:如果一个数据在近期被高频率地访问,那么在将来它被再访问的概率也会很高,而访问频率较低的数据将来很大概率不会再使用。

很多人看到上面的描述,会认为LFU算法主要是比较数据的访问次数,毕竟访问次数多了自然访问频率就高啊。实际上,访问频率不能等同于访问次数,抛开访问时间谈访问次数就是在“耍流氓”。
Redis 的 LRU 与 LFU 算法实现,Redis数据库,redis,算法,数据库,linux,运维
在这段时间片内数据A被访问了5次,数据B与C各被访问了4次,如果按照访问次数判断数据热度值,必然是A>B=C;如果考虑到时效性,距离当前时间越近的访问越有价值,那么数据热度值就应该是C>B>A。因此,LFU算法一般都会有一个时间衰减函数参与热度值的计算,兼顾了访问时间的影响。

LFU算法实现的数据结构与LRU一样,也采用Hash表 + 双向链表的结构,数据在双向链表内按照热度值排序。如果某个数据被访问,更新热度值之重新插入到链表合适的位置,这个比LRU算法处理的流程复杂一些。

3.2 Redis LFU算法实现

Redis 4.0版本开始增加了LFU缓存淘汰策略,也采用数据随机筛选规则,然后依据数据的热度值排序,淘汰掉热度值较低的数据。

3.2.1 LFU算法代码实现

LFU算法的实现没有使用额外的数据结构,复用了redisObject数据结构的lru字段,把这24bit空间拆分成两部分去使用。

由于记录时间戳在空间被压缩到16bit,所以LFU改成以分钟为单位,大概45.5天会出现数值折返,比LRU时钟周期还短。
低位的8bit用来记录热度值(counter),8bit空间最大值为255,无法记录数据在访问总次数。
Redis 的 LRU 与 LFU 算法实现,Redis数据库,redis,算法,数据库,linux,运维

LFU热度值(counter)的算法实现:

#define LFU_INIT_VAL 5
 
/* Logarithmically increment a counter. The greater is the current counter value
 * the less likely is that it gets really implemented. Saturate it at 255. */
uint8_t LFULogIncr(uint8_t counter) {
  if (counter == 255) return 255;
  double r = (double)rand()/RAND_MAX;
  double baseval = counter - LFU_INIT_VAL;
  if (baseval < 0) baseval = 0;
  double p = 1.0/(baseval*server.lfu_log_factor+1);
  if (r < p) counter++;
  return counter;
}

● counter 小于或等于 LFU_INIT_VAL 时候,数据一旦被访问命中, counter接近100%概率递增1;
● counter 大于 LFU_INIT_VAL 时候,需要先计算两者差值,然后作为分母的一部分参与递增概率的计算;
● 随着counter 数值的增大,递增的概率逐步衰减,可能数次的访问都不能使其数值加1;
● 当counter 数值达到255,就不再进行数值递增的计算过程。
LFU counter的计算也并非“一尘不变”,为了适配各种业务数据的特性,Redis在LFU算法实现过程中引入了两个可调参数:
Redis 的 LRU 与 LFU 算法实现,Redis数据库,redis,算法,数据库,linux,运维

热度值counter的时间衰减函数:
 
unsigned long LFUDecrAndReturn(robj *o) {
    unsigned long ldt = o->lru >> 8;
    unsigned long counter = o->lru & 255;
    unsigned long num_periods = server.lfu_decay_time ? LFUTimeElapsed(ldt) / server.lfu_decay_time : 0;
    if (num_periods)
        counter = (num_periods > counter) ? 0 : counter - num_periods;
    return counter;
}

阅读完以上的内容,是否感觉似曾相似?实际上LFU counter计算过程就是对访问次数进行了数值归一化,将数据访问次数映射成热度值(counter),数值的范围也从 [0,+∞) 映射到另一个维度的 [0,255] 。

3.3.2 LFU Counter分析

仅从代码层面分析研究Redis LFU算法实现会比较抽象且枯燥,无法直观的呈现counter递增概率的算法效果,以及counter数值与访问次数的关系。
lfu_log_factor为默认值10的场景下,利用Python实现Redis LFU算法流程,绘制出LFU counter递增概率曲线图:
Redis 的 LRU 与 LFU 算法实现,Redis数据库,redis,算法,数据库,linux,运维
可以清晰的观察到,当LFU counter数值超过LFU_INIT_VAL之后,曲线出现了垂直下降,递增概率陡降到0.2%左右,随后在底部形成一个较为缓慢的衰减曲线,直至counter数值达到255则递增概率归于0,贴合3.3.1章节分析的理论。

保持Redis系统配置默认值的情况下,对同一个数据持续的访问,并采集此数据的LFU counter数值,绘制出LFU counter数值曲线图:
Redis 的 LRU 与 LFU 算法实现,Redis数据库,redis,算法,数据库,linux,运维
随着访问次数的不断增加,LFU counter数值曲线呈现出爬坡式的递增,形态趋近于根号曲线,由此推测出以下观点:
● 在访问次数相同的情况下,counter数值不是固定的,大概率在一个范围内波动;
● 在同一个时间段内,数据之间访问次数相差上千次,才可以通过counter数值区分出哪些数据更热,而“温”数据之间可能很难区分热度。

四、总结

通过对Redis LRU与LFU算法实现的介绍,我们可以大体了解两种算法策略的优缺点,在Redis运维过程中,可以依据业务数据的特性去选择相应的算法。

如果业务数据的访问较为均匀,OPS或CPU利用率一般不会出现周期性的陡升或陡降,数据没有体现出相对的“冷热”特性,即建议采用LRU算法,可以满足一般的运维需求。

相反,业务具备很强时效性,在活动推广或大促期间,业务某些数据会突然成为热点数据,监控上呈现出OPS或CPU利用率的大幅波动,为了能抓取热点数据便于后期的分析或优化,建议一定要配置成LFU算法。

在Used_memory接近Maxmemory的情况下,Redis一直都采用随机的方式筛选数据,且筛选的个数极其有限,所以,LFU算法无法展现出较大的优势,也可能会淘汰掉比较热的数据。文章来源地址https://www.toymoban.com/news/detail-547801.html

到了这里,关于Redis 的 LRU 与 LFU 算法实现的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Springboot+Redis:实现缓存 减少对数据库的压力

    🎉🎉欢迎光临,终于等到你啦🎉🎉 🏅我是苏泽,一位对技术充满热情的探索者和分享者。🚀🚀 🌟持续更新的专栏 Redis实战与进阶 本专栏讲解Redis从原理到实践 这是苏泽的个人主页可以看到我其他的内容哦👇👇 努力的苏泽 http://suzee.blog.csdn.net/   目录 缓存如何实现?

    2024年03月24日
    浏览(55)
  • Go重写Redis中间件 - Go实现内存数据库

    前面我们实现了一个简单的回发Redis,这里我们要实现一个真正的Redis内核 实现底层Dict数据结构 新建一个datastruct文件夹,放一些我们要用的数据结构,比如Redis的核心起始就是一个map,再新建一个包实现这个map或者叫字典,字典的底层使用的就是map dict.go 写一个Dict接口定义

    2024年02月11日
    浏览(48)
  • 使用Nodejs搭建HTTP服务,并实现公网远程访问Redis数据库「内网穿透」

    转载自cpolar极点云文章:公网远程连接Redis数据库「内网穿透」 Redis作为一款高速缓存的key value键值对的数据库,在许许多多的场景中广泛使用,由于是把数据存储在内存中,所以读写效率极高。 下面介绍如何在内网虚拟机的linux中搭建redis并通过cpolar内网穿透实现公网访问 进入

    2024年02月13日
    浏览(43)
  • Java中利用Redis,ZooKeeper,数据库等实现分布式锁(遥遥领先)

    1.1 什么是分布式锁 在我们进行单机应用开发涉及并发同步的时候,我们往往采用synchronized或者ReentrantLock的方式来解决多线程间的代码同步问题。但是当我们的应用是在分布式集群工作的情况下,那么就需要一种更加高级的锁机制,来处理种跨机器的进程之间的数据同步问题

    2024年02月03日
    浏览(49)
  • 页面置换算法(OPT、FIFO、LRU、时钟、LFU)

    在地址映射过程中,若在页面中发现所要访问的页面不在内存中,则产生缺页中断。当发生缺页中断时,如果操作系统内存中没有空闲页面,则操作系统必须在内存选择一个页面将其移出内存,以便为即将调入的页面让出空间。而用来选择淘汰哪一页的规则叫做页面置换算法

    2024年02月06日
    浏览(27)
  • 【Redis】内存数据库Redis进阶(Redis哨兵集群)

    基于 Redis 集群解决单机 Redis 存在的四大问题:   搭建一个三节点形成的 Sentinel 集群,来监管 Redis 主从集群。   【Redis】内存数据库Redis进阶(Redis主从集群)   架构图: 三个sentinel实例信息: 节点 IP PORT s1 192.168.150.101 27001 s2 192.168.150.101 27002 s3 192.168.150.101 27003 之前

    2024年02月14日
    浏览(44)
  • 在Spring中,可以使用不同的方式来实现分布式锁,例如基于数据库、Redis、ZooKeeper等

    在Spring中,可以使用不同的方式来实现分布式锁,例如基于数据库、Redis、ZooKeeper等。下面是两种常见的实现方式: 使用Redis实现分布式锁: 使用自定义注解实现本地锁: 以上是两种常见的在Spring中实现分布式锁的方式。第一种方式使用Redis作为分布式锁的存储介质,通过

    2024年03月17日
    浏览(45)
  • Redis缓存数据库

    目录 一、概述 1、Redis  2、Redis的安装 Redis Windows环境设置 3、String: 字符串 3.1、字符串 3.2、数值 3.3、bitmap 4、Hash: 散列 5、List: 列表 6、Set: 集合 7、Sorted Set: 有序集合 常识: 磁盘:1.寻址:ms(毫秒)2.带宽:MB/s 内存:1.寻址:ns    (纳秒) 2.带宽:GB/s 秒--毫秒--微妙--纳秒

    2024年02月04日
    浏览(59)
  • Redis内存数据库

    Redis内存数据库 NoSQL数据库简介 Redis简介 Redis应用场景 windows下安装和使用Redis 在linux下安装redis Redis数据可视化RedisDesktopManager Redis配置 Redis 数据类型 Redis 字符串(String) Redis 哈希(Hash) Redis 列表(List) Redis 集合(Set) Redis 有序集合(sorted set) Redis key命令 Redis连接命令 Redis服务器命令

    2024年02月09日
    浏览(39)
  • 1 - 搭建Redis数据库服务器|LNP+Redis

    数据库服务软件分为2类: 关系型数据库服务软件 简称 RDBMS 按照预先设置的组织结构 将数据存储在物理介质上 数据之间可以做关联操作 非关系型数据库服务软件 简称 NoSQL 不仅仅是SQL 不需要预先定义数据存储结构 每条记录可以有不同的数据类型和字段个数 只需要 key valu

    2024年01月25日
    浏览(58)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包