【离散数学】点割集(割点集)与边割集详解

这篇具有很好参考价值的文章主要介绍了【离散数学】点割集(割点集)与边割集详解。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1. 点割集又叫割点集

 

2. 定义

设无向图 G=<V,E>为连通图,

若有点集v1⊂V,

使图G删除了v1的所有结点后(将结点与其关联的边都删除)得到的子图是不连通的,

而删除了v1的任何真子集后所得到的子图仍然是连通图,

则称v1为G的一个点割集。

若某一个结点构成一个点割集,则称该结点为割点。

 

3. 点数最少的割点集的点数用k(G)表示

 

4. 边割集的定义:

边割集:E是一些边的集合,

如果删除E里的所有边之后G不在连通,

但是对于E的任何真子集E1,

删除E1之后G仍然连通,则称E是边割集。文章来源地址https://www.toymoban.com/news/detail-547937.html

到了这里,关于【离散数学】点割集(割点集)与边割集详解的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

  • 【离散数学】gpt教我学数学2

    对于给定的A、B和f,判断f是否为从A到B的函数:f:A→B.如果是,说明f是否为单射、满射、双射的. A=B=R笛卡尔积R,f(x,y)=y+1,x+1 对于给定的集合 A = B = R × R A=B=mathbb{R}timesmathbb{R} A = B = R × R 和函数 f : A → B f:Arightarrow B f : A → B , f ( ⟨ x , y ⟩ ) = ⟨ y + 1 , x + 1 ⟩ f(langle x,

    2024年02月09日
    浏览(13)
  • 【离散数学】gpt教我学数学6

    设A是n元集(n=1),则从A到A的函数中有几个双射函数,有几个单射函数? 设 A A A 为 n n n 元集,下面分别计算从 A A A 到 A A A 的双射函数和单射函数的数量: 双射函数的数量: 一个双射函数 f : A → A f:Arightarrow A f : A → A 必须是一一对应的,即 f f f 必须是一个双射。因此,可

    2024年02月10日
    浏览(12)
  • 离散数学·集合论(1)

    离散数学·集合论(1)

    集合是什么:一组无序对象的集合 集合里有什么:元素(即集合中的对象称为元素) 集合的描述方法:枚举法,集合构建式符号 特殊的集合:全集,空集(没有任何元素,符号为∅)  1.集合也可以成为集合的元素,譬如幂集   2.空集不等同于包含空集的集合,∅  ≠ { ∅

    2024年02月07日
    浏览(10)
  • 《离散数学》:逻辑

    《离散数学》:逻辑

    离散数学 是数学的一个分支,研究 离散对象 和 离散结构 的数学理论和方法。这学期学校开了离散数学的课程,我受益颇丰,感觉到了离散数学真正的魅力,也被开创离散数学各个分支的人的聪明与才智深深折服。与连续数学不同,离散数学关注的是 离散的 、 离散化的数

    2024年02月08日
    浏览(11)
  • 离散数学实验一

    离散数学实验一

    实验题目:可简单图化、连通图、欧拉图和哈密顿图的判断 实验目的: 掌握可简单图化的定义及判断方法; 掌握连通图、欧拉图的判断方法; 掌握欧拉回路的搜索方法; 了解欧拉图的实际应用。 实验要求: 给定一非负整数序列(例如:(4,2,2,2,2))。 判断此非负整数序列是

    2024年02月05日
    浏览(30)
  • 离散数学组合计数

    离散数学组合计数

    主要内容 加法法则和乘法法则 排列与组合 二项式定理与组合恒等式 多项式定理 加法法则 乘法法则 分类处理与分步处理 问题1:某旅游团从南京到上海,可以乘骑车,也可以乘火车,假定骑车每日有三班,火车每日有2班,那么一天中从南京到上海共有多少种不同的走法?

    2024年02月01日
    浏览(12)
  • 头歌实训-离散数学-图论!

    头歌实训-离散数学-图论!

    5阶无向完全图的边数为:10 设图 G 有 n 个结点, m 条边,且 G 中每个结点的度数不是 k ,就是 k+1 ,则 G 中度数为 k 的节点数是: n(k+1)-2m 若一个图有5个顶点,8条边,则该图所有顶点的度数和为多少?16 他让输出关联矩阵和邻接矩阵这不简单么? 我是直接摆烂了 输出个球呀

    2024年02月04日
    浏览(39)
  • 离散数学——图论

    离散数学——图论

    图的定义 现实世界中许多现象能用某种图形表示,这种图形是由一些点和一些连接两点间的连线所组成。 例子:a,b,c,d 4个篮球队进行友谊比赛。为了表示4个队之间比赛的情况,我们作出图7.1.1的图形。在图中4个小圆圈分别表示这4个篮球队,称之为 结点 。如果两队

    2024年02月02日
    浏览(13)
  • 离散数学 | 图论 五色定理证明

    离散数学 | 图论 五色定理证明

    看来一下午终于看懂了,甚至差点睡过去…… 趁热打铁记录一下自己的理解。 任意一个简单的连通平面图 点着色 至多 五色 。 一、 设 G 为一个至少有三个结点的连通平面图,则 G 中必有一个结点 u,u 的度数 deg(u)≤5。 Step1:证明简单连通平面图 G 中一定存在一个顶点,其

    2024年02月01日
    浏览(13)
  • 【离散数学】4. 图论

    【离散数学】4. 图论

    1.数理逻辑 2. 集合论 3. 代数系统 4. 图论 图:点+边+边与点的映射函数 连通性与判别 欧拉图与哈密尔顿图 二分图和平面图与欧拉公式 树及生成树 单源点最短路径:Dijkstra算法 对偶图 4.1.1 图 一个图G是一个三重组 V ( G ) , E ( G ) , Φ G V(G),E(G),Phi_G V ( G ) , E ( G ) , Φ G ​ V(G)是一

    2024年02月10日
    浏览(10)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包