Codeforces Round 875 (Div. 1) A. Copil Copac Draws Trees

这篇具有很好参考价值的文章主要介绍了Codeforces Round 875 (Div. 1) A. Copil Copac Draws Trees。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

题意

Copil Copac 给定了一个由 n−1
条边组成的列表,该列表描述了一棵由 n
个顶点组成的树。他决定用下面的算法来绘制它:

步骤 0:绘制第一个顶点(顶点1)。转到步骤1。
步骤 1:对于输入中的每一条边,依次:如果该边连接一个已经 制的顶点u和一个未绘制的顶点v ,则绘制未绘制的顶点v 和该边。检查完每一条边后,进入步骤2 。
步骤2 :如果所有顶点都绘制完毕,则终止算法。否则,转到步 1 。

读取次数定义为 Copil Copac 执行步骤1 的次数。
求出 Copil Copac 画树所需的读数。

输入

输入:
每个测试包含多个测试用例。第一行输入包含一个整数t (1≤t≤104)–测试用例数。测试用例说明如下。
每个测试用例的第一行包含一个整数 n (2≤n≤2⋅105 )–树的顶点数。
每个测试用例的下面n−1 行包含两个整数ui 和vi (1≤ui,vi≤n ui≠vi)–表示(ui,vi) 是列表中的i 条边。可以保证给定的边构成一棵树。
保证所有测试用例的 n 之和不超过 2⋅105


Codeforces Round 875 (Div. 1) A. Copil Copac Draws Trees,算法,c++
Codeforces Round 875 (Div. 1) A. Copil Copac Draws Trees,算法,c++

思路

可以这样思考 ,对于一个已经构建好了的图的相邻的三个点a,b,c(b点为中间点),如果a,b边构建的序号在b,c,边之后,那么在构建a,b边之后至少还需要一次额外的操作来构建b,c,边。那么可以根据这个思路,从1点开始往他的临界点dfs,判断条件是否需要次数+1,最后所有的值取最大值输出即可。

代码

#include<cstdio>
#include <iostream>
#include <algorithm>
#include <string.h>
#include <string>
#include <math.h>
#include<vector>
#include<queue>
#include<map>
#define sc_int(x) scanf("%d", &x)
#define sc_ll(x) scanf("%lld", &x)
#define pr_ll(x) printf("%lld", x)
#define pr_ll_n(x) printf("%lld\n", x)
#define pr_int_n(x) printf("%d\n", x)
#define ll long long 
using namespace std;

const int N=1000000+100,inf=0x3f3f3f3f;
int n ,m;
int s[N];

int h[N],ne[N],e[N],idx,w[N];
bool st[N];

map<pair<int,int>,int>q;

void add(int a,int b)//连边
{
    ne[idx]=h[a];
    e[idx]=b;
    h[a]=idx++;
}

int   dfs(int x,int time,int head)
{
    int k=time;
    for(int i =h[x];i!=-1;i=ne[i])
    {
        int j =e[i];
        if(j==head)continue;//如果dfs到上一个节点就不进行dfs
        if(head!=-1&&q[{head,x}]>q[{x,j}]) k =max(k,dfs(j,time+1,x));//dfs遍历
        else k =max(k,dfs(j,time,x));
    }
    return k;
}

void slove( )
{
    int t;
    sc_int(n);
    
    memset(h,-1,sizeof h);
    idx=0;
    for(int i =1;i<n;i++)
    {
        int a,b;
        cin>>a>>b;
        add(a,b),add(b,a);//因为是无向图所以建双向边
        q[{a,b}]=q[{b,a}]=i;//保存次序
    }

    cout<<dfs(1,1,-1);


    cout<<endl;
}

int main()
{
    int t;
    sc_int(t);
    while(t--)
    slove();


    return 0;
}

//ps: 这段时间发生了很多事,总之已经是打算退役了吧,之后的cf也就是偶尔写写文章来源地址https://www.toymoban.com/news/detail-548041.html

到了这里,关于Codeforces Round 875 (Div. 1) A. Copil Copac Draws Trees的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Codeforces Round 920 (Div. 3)

    Codeforces Round 920 (Div. 3) 题意:随机给出正方形在平面坐标系上的四个顶点的坐标,求正方形的面积,正方形边与xy轴平行。 思路:因为正方形与坐标轴平行,所以找出相同的两x或y坐标即可找到一条边的长度,平方就是面积,注意结果返回整型。 AC code: 题意:给出两个01字符

    2024年01月17日
    浏览(68)
  • Codeforces Round 912 (Div. 2)

    大等于2依据冒泡排序即可排序,因此判断下1即可 对每一个数字找哪一位肯定为0填0其他的填1 从后往前考虑加到当前集合或新立一个集合 从最高位开始考虑能否为1,计算能否时每个数当前位为1

    2024年02月04日
    浏览(45)
  • Codeforces Round 881 (Div. 3)

    给定一个数组,给每个元素涂色。求最大的代价。 代价为每个颜色的代价和。 每个颜色的代价为涂了该颜色的元素的极差。 因为是极差,每个元素要么对答案有正的贡献,要么有负的贡献,要么无贡献。且正负贡献的个数要相同。 因为要最大值,自然就是想有正贡献的是最

    2024年02月09日
    浏览(44)
  • Codeforces Round 867 (Div. 3)

    从所有a[i]+i-1=t的选择种取个max即可 实际上就是取同符号乘积的最大值 找规律,发现结果与边长n的关系是:res = n * (n + 3) - (n - 2) ①当n为奇数时,除了1其他均无解 ②当n为偶数时,我们可以构造一个形如n,1,n - 2,3,...的数列 首先我们可以发现n必定出现在起始位置。如果n不在起

    2024年02月02日
    浏览(49)
  • Codeforces Round 874 (Div. 3)

    用最少的长度为2的字符串按一定规则拼出s。规则是:前一个字符串的尾与后一个字符串的首相同。 统计s中长度为2的不同字符串数量。 给定数组a[n]和b[n],重排b后,令任意|ai−bi|≤k成立(1≤k≤n)数据保证一定有解。 将a和b分别按从小到大的顺序匹配便是最优的,一定能满足

    2024年02月05日
    浏览(38)
  • Codeforces Round 894 (Div. 3)

    签到题 a数组里,大于等于前一个值的a[i]会被写到b里。直接遍历b,如果b[i]比前一个小就在它前面插一个相等的值 计算反过来的长度,判断是否相等就行 对于没有重复口味的集合,能选出的方案是n*(n-1)/2 (从n个里面选2个的组合数)。二分找出需要多少不同口味的冰淇淋,

    2024年02月11日
    浏览(45)
  • Codeforces Round 926 (Div. 2)

    类似于倍投法,就是在一赔一的情况下,第一次压一块钱,每输一次就押注上一次两倍的金额. 假如资金无限的话,这种方法赢的期望为无穷大.原理类似于二进制,不论你输再多次,只要赢一次总额就增加了1.比如 15 二进制1111,前3把一直输,但是只要第4把赢,就一定可以增加 1

    2024年02月20日
    浏览(45)
  • Codeforces Round 868 Div 2

    要求构造一个仅包含 (1) 和 (-1) 的长度为 (n) 的数组 (a) ,使得存在 (k) 个下标对 ((i, j), i j) 满足 (a_i times a_j = 1) 。 当有 (x) 个 (1) , (y) 个 (-1) 时,其满足条件的下标对数量为 (frac{x (x - 1)}{2} + frac{y (y - 1)}{2}) 。 由于 (n) 只有 (100) ,直接枚举 (x) 即可。

    2024年02月01日
    浏览(45)
  • Codeforces Round 866 (Div. 2)

    给出一个仅由_或^组成的字符串,你可以在任意位置添加_或^字符,使得字符串满足: 任意字符要么属于^_^的一部分,要么属于^^的一部分。求最少添加的字符数量。 对于_我们只需处理没有组成^_^的_: ①如果_在首位置且左边没有^则添加^ ②如果_在尾位置且右边没有^则添加

    2023年04月25日
    浏览(57)
  • Codeforces Round 871 (Div. 4)

    给定n个长度为10的字符串,问其与codeforces字符串的对应下标字母不同的个数。 对于每个字符串从前往后依次和“codeforces”对应字符比较然后统计不同字母数即可 给定长度为n的数组,问连续相邻为0的最大长度 维护一个全局最大长度res,和当前连续序列的长度cnt。从前往后扫

    2024年02月03日
    浏览(53)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包