信号与系统——FT、FS、DTFT、DFS、DFT、FFT(一)

这篇具有很好参考价值的文章主要介绍了信号与系统——FT、FS、DTFT、DFS、DFT、FFT(一)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、傅里叶变换(FT)——连续时间,连续频谱
假设f(x),g(x) 是两个函数,并且规定内积定义为:
dfs信号与系统,傅里叶变换,深度优先,算法
其中g(x) 表示g(x)的共轭。那么e^(iωt) 在这种内积的定义下是一族正交基,只要满足一定的条件,任何函数都可以用e^(iωt) 叠加出来,对应系数设为F(ω)。即有
dfs信号与系统,傅里叶变换,深度优先,算法
该公式就是傅里叶逆变换。任意向量与基之间的内积就是该向量在基所在方向的投影,内积的结果就是系数,所以其中系数F(ω)可用内积计算
dfs信号与系统,傅里叶变换,深度优先,算法
该公式就是傅里叶变换。傅里叶变换是用来处理连续系统的

二、连续时间周期信号的傅里叶级数表示(FS)——连续时间离散频谱

e^(iωt) 是一族正交基,任何函数都可以用e^(iωt) 叠加出来。
dfs信号与系统,傅里叶变换,深度优先,算法
dfs信号与系统,傅里叶变换,深度优先,算法文章来源地址https://www.toymoban.com/news/detail-549265.html

到了这里,关于信号与系统——FT、FS、DTFT、DFS、DFT、FFT(一)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【快速傅里叶变换(fft)和逆快速傅里叶变换】生成雷达接收到的经过多普勒频移的脉冲雷达信号(Matlab代码实现)

     💥💥💞💞 欢迎来到本博客 ❤️❤️💥💥 🏆博主优势: 🌞🌞🌞 博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️ 座右铭: 行百里者,半于九十。 📋📋📋 本文目录如下: 🎁🎁🎁 目录 💥1 概述 📚2 运行结果 🎉3 参考文献 🌈4 Matlab代码实现 本文的

    2024年02月10日
    浏览(51)
  • 离散傅里叶变换(DFT)

    离散傅里叶变换(Discrete Fourier Transform)是信号分析中的一种基本方法,将离散时序信号从时间域变换到频率域,是傅里叶变换在时域和频域都呈离散的形式。 对于傅氏变换,其定义为: 利用该公式,可以实现对一些符合条件的连续函数进行傅氏变换。然而,在很多时候,我们

    2024年02月11日
    浏览(41)
  • 002 OpenCV dft 傅里叶变换

    目录 一、傅里叶变换 1.1 傅里叶变换概念 1.2 opencv中傅里叶变换 二、实验代码 本文使用环境为: Windows10 Python 3.9.17 opencv-python 4.8.0.74 傅里叶变换(Fourier Transform)是一种在数学、物理和工程领域广泛应用的算法,用于分析信号或数据的频率成分。它是由法国数学家约瑟夫·傅

    2024年02月05日
    浏览(44)
  • MATLAB——DFT(离散傅里叶变换)

    题目1: 已知有限长序列x(n)为: x(n)=[0,1,2,3,4,5,6,7,8,9],求x(n)的DFT和IDFT。要求 1)画出序列傅里叶变换对应的|X(k)|和arg[X(k)]图形。 2)画出原信号与傅里叶逆变换IDFT[X(k)]图形进行比较。 知识点: DFT(Discrete Fourier Transform)和IDFT(Inverse Discrete Fourier Transform)是互为逆运算的变换

    2023年04月23日
    浏览(55)
  • 傅里叶变换(FFT)笔记存档

    参考博客:https://www.luogu.com.cn/blog/command-block/fft-xue-xi-bi-ji 目录: FFT引入 复数相关知识 单位根及其相关性质 DFT过程(难点) DFT结论(重要) IDFT结论(重要) IDFT结论证明(难点)

    2024年02月10日
    浏览(51)
  • 快速傅里叶变换——FFT

    1·为什么要进行傅里叶变换 傅里叶变换——进行信号的分解过程 时域信号——分解成一系列频率下的正弦//余弦信号(两者在相位上有所不同),一般情况下可以统称为正弦信号。  上图表示了傅里叶的变化过程。对于时域的信号,可以将其分解成一系列频域下的正弦信号,

    2024年02月10日
    浏览(45)
  • 快速傅里叶变换(FFT)算法学习

    人生如逆旅,我亦是行人。 算法的世界多么广大,我们可以将算法大致分为两类: 第一类是较为有用的算法:比如一些经典的图算法,像 DFS 和 BFS(深度 / 广度优先算法),这些算法应用在很多方面,他们非常高效, 第二类算法是那些极具美感的算法:例如当我们第一次看

    2024年02月05日
    浏览(47)
  • 快速傅里叶变换FFT学习笔记

    我们正常表示一个多项式的方式,形如 (A(x)=a_0+a_1x+a_2x^2+...+a_nx^n) ,这是正常人容易看懂的,但是,我们还有一种表示法。 我们知道, (n+1) 个点可以表示出一个 (n) 次的多项式。 于是,我们任意地取 (n+1) 个不同的值,表示 (x) ,求出的值与 (x) 对应,形成 (n+1) 个点

    2024年02月01日
    浏览(50)
  • MATLAB——FFT(快速傅里叶变换)

    基础知识 FFT即快速傅里叶变换,利用周期性和可约性,减少了DFT的运算量。常见的有按时间抽取的基2算法(DIT-FFT)按频率抽取的基2算法(DIF-FFT)。 1.利用自带函数fft进行快速傅里叶变换 若已知序列 x = [ 4 , 3 , 2 , 6 , 7 , 8 , 9 , 0 ] x=[4,3,2,6,7,8,9,0] x = [ 4 , 3 , 2 , 6 , 7 , 8 , 9 , 0 ]

    2024年02月03日
    浏览(75)
  • FPGA:实现快速傅里叶变换(FFT)算法

    第一次使用FPGA实现一个算法,搓手手,于是我拿出一股势在必得的心情打开了FFT的视频教程,看了好几个视频和好些篇博客,于是我迷失在数学公式推导中,在一位前辈的建议下,我开始转换我的思维, 从科研心态转变为先用起来 ,于是我关掉我的推导笔记,找了一篇叫我

    2024年02月03日
    浏览(47)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包