大咖观点| AIGC与因果推断的双向赋能

这篇具有很好参考价值的文章主要介绍了大咖观点| AIGC与因果推断的双向赋能。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

大咖观点| AIGC与因果推断的双向赋能,AIGC,人工智能,大数据

近日,由DataFun主办的第三届数据科学在线峰会盛大举办。聚焦机器学习与数据挖掘、AB实验、因果推断、数据中台与数字化转型、用户增长与运营、数据科学最佳实践等6大数据科学主题,数十位国内外一线数据科学家围绕数据科学前沿技术成果和应用实践经验深入分享和交流。九章云极DataCanvas公司深度参与峰会,并分享前沿数据科学技术的最新研究进展。

峰会上,九章云极DataCanvas公司AI架构师何刚发表“AIGC与因果推断的双向赋能”主题演讲,探讨近期人工智能高热技术AIGC和经典技术因果推断的融合创新可能。

何刚表示,AIGC在非结构化内容的生成中表现惊艳,对于结构化数据分析目前还处于空白状态,而因果推断则是当前结构化数据分析领域最受瞩目的关键技术之一;以Agent-Based Modeling(ABM多智能体建模)为桥梁,可以构建AIGC与因果推断的链接,并实现AIGC与因果推断的双向赋能。

大咖观点| AIGC与因果推断的双向赋能,AIGC,人工智能,大数据

ABM多智能体建模

ABM多智能体建模是一种用来模拟具有自主意识的智能体的行动和相互作用的计算模型,具有高仿真性、涌现属性、可解释性等优势。ABM的运行模式是在不同的参数组合下进行仿真运行,运行过程中可以输出数据,并将数据存储下来形成数据集,是非常完整且具有反事实可获取、特征完整性、可控制性等优质特性的数据资产。经验证,从ABM系统中获取的优质数据在因果推断中的因果效应估计、因果发现、评价指标等领域都具有很好的适用性,突破因果推断研究领域无反事实样本的限制。

大咖观点| AIGC与因果推断的双向赋能,AIGC,人工智能,大数据

ABM为因果推断提供优质的数据基础

由此可见,ABM多智能体建模非常适合作为AI载体,实现AIGC从非结构化数据到结构化数据生成的拓展,弥补AIGC在结构化数据领域的短板。

同时,因果推断将加速ABM多智能体建模流程,尤其在校准数据和涌现分析这两个重要流程环节表现优异。在校准数据环节,通过将因果效应估计应用到参数分析,可以更贴近校准目标、加速仿真的校准过程,加快推进业务推演和辅助决策;在涌现解释环节,通过组合因果发现算法生成因果图,将因果发现、机器学习、敏感性分析技术相结合,可以对涌现行为做出更丰富的解释,进一步增强涌现解释能力。

结合九章云极DataCanvas公司近年来在因果推断领域的理论创新成果和YLearn因果学习软件这一开源重器的研发经验,何刚提出,拓延AIGC产生结构化数据能力,利用AIGC生成因果学习模型报告,以及应用因果推断拓展AIGC的因果解释能力可以成为未来因果推断与AIGC技术深度融合的三个研究方向。

由九章云极DataCanvas公司开源发布的YLearn因果学习软件,是全球开源工具中唯一能够端到端地解决“因果发现、因果量识别、因果效应估计、反事实推断和策略学习”五大因果学习任务的软件工具。YLearn突破了机器学习基于相关关系建模的局限性,发掘数据中稳定的因果关系,实现在反事实条件下的推断,可以充分赋能ABM多智能体建模,助力AIGC涌现能力的挖掘。

未来,作为以“硬科技”立身的人工智能基础软件供应商,九章云极DataCanvas公司将持续专注AI基础能力研发领域,进一步推动AIGC与因果推断等前沿技术的融合创新,并加速前沿技术的产业化应用,为AI热潮贡献一份自主创新能量。文章来源地址https://www.toymoban.com/news/detail-550899.html

到了这里,关于大咖观点| AIGC与因果推断的双向赋能的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 因果推断《Causal Inference in Python》中文笔记第1章 因果推断导论

    《Causal Inference in Python: Applying Causal Inference in the Tech Industry》因果推断啃书系列   第1章 因果推断导论   第2章 随机实验与统计学回顾   第3章 图形化因果模型   第4章 线性回归的不合理有效性   第5章 倾向分   第6章 效果异质性   第7章 元学习器   第8章

    2024年02月21日
    浏览(37)
  • 因果推断阶段系列21[阶段2-3]----因果模型评估

    大部分关于因果性的资料中,研究人员使用模拟数据来检查他们的方法是否有效。就像我们在一章中所做的那样,模拟生成关于 Y 0 i Y_{0i}

    2024年02月08日
    浏览(35)
  • 因果推断(四)断点回归(RD)

    在传统的因果推断方法中,有一种方法可以控制观察到的混杂因素和未观察到的混杂因素,这就是断点回归,因为它只需要观察干预两侧的数据,是否存在明显的断点。 ⚠️注意:当然这个方法只能做到局部随机,因此很难依据该结论推向全局。 本文参考自rdd官方示例,通

    2024年02月13日
    浏览(44)
  • 果推断16--基于反事实因果推断的度小满额度模型学习笔记

    目录 一、原文地址 二、一些问题 2.1如何从RCT随机样本过渡到观测样本因果建模? 2.2反事实学习的核心思想 2.3度小满的连续反事实额度模型 Mono-CFR 2.4Mono-CFR代码实现(待补充) 2.5CFR学习 2.5.1TarNet 2.5.2CFR 2.5.3DR-CFR 参考   基于反事实因果推断的度小满额度模型 对于RCT样本的情

    2024年02月07日
    浏览(41)
  • 因果推断系列16-面板数据与固定效应

    加载第三方包

    2024年02月05日
    浏览(40)
  • 因果推断4--Causal ML(个人笔记)

    目录 1 安装教程及官方文档 1.1 pip安装 1.2 API文档 1.3 代码仓库 2 Uplift模型与主要方法介绍 2.1 发放代金券 2.2 多treatment 2.3 实验方法 3 causalml.inference.tree module 3.1 UpliftTreeClassifier 3.2 UpliftRandomForestClassifier 3.3 CausalRandomForestRegressor 4 待补充 5 问题 pip install causalml https://causalml.r

    2024年02月12日
    浏览(36)
  • 因果推断之微软开源的dowhy使用学习

    本文参考微软dowhy官网文档,并参考相关博客进行整理而来,官方地址:https://github.com/py-why/dowhy 因果推理 是基于观察数据进行反事实估计,分析干预与结果之间的因果关系。 DoWhy是微软发布的 端到端 因果推断Python库,主要特点是: 基于一定经验假设的基础上,将问题转化

    2024年02月09日
    浏览(35)
  • [因果推断] 增益模型(Uplift Model)介绍(三)

    增益模型(uplift model):估算干预增量(uplift),即 干预动作(treatment) 对 用户响应行为(outcome) 产生的效果。 这是一个 因果推断(Causal Inference) 课题下估算 ITE (Individual Treatment Effect)的问题——估算同一个体在 干预与不干预 (互斥情况下)不同outcome的差异。为了克

    2024年02月06日
    浏览(31)
  • 因果推断-PSM的原理及python实现

    目录 一、背景:员工技能培训真的是浪费时间吗 二、PSM的原理及python实现 1、PSM的原理 1.1 计算倾向性得分 1.2 匹配对照组样本 1.3 平衡性检查 1.4 敏感度分析 2、PSM的python实现 假设你是一家大企业的老板,你希望知道员工技能培训对员工生产率的提升有多大帮助。已知参加培

    2024年02月15日
    浏览(38)
  • 收集一些因果推断比较好的工具包,教程

    1.国内一个武汉大学教授手下博士写的基础的因果知识课件: http://www.liuyanecon.com/wp-content/uploads/%E7%8E%8B%E5%81%A520201022.pdf 感兴趣可以看看其他手下博士做的课件: Causal inference reading group 2020 – 刘岩 – 宏观金融 2.耶鲁大学教授课程全套  课件+代码+视频 代码:GitHub - paulgp/app

    2023年04月10日
    浏览(33)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包