残差网络(ResNet) -深度学习(Residual Networks (ResNet) – Deep Learning)

这篇具有很好参考价值的文章主要介绍了残差网络(ResNet) -深度学习(Residual Networks (ResNet) – Deep Learning)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

在第一个基于cnn的架构(AlexNet)赢得ImageNet 2012比赛之后,每个随后的获胜架构都在深度神经网络中使用更多的层来降低错误率。这适用于较少的层数,但当我们增加层数时,深度学习中会出现一个常见的问题,称为消失/爆炸梯度。这会导致梯度变为0或太大。因此,当我们增加层数时,训练和测试错误率也会增加。
深度学习残差网络,深度学习,人工智能,残差网络,ResNet

在上图中,我们可以观察到56层的CNN在训练和测试数据集上的错误率都高于20层的CNN架构。通过对错误率的进一步分析,得出错误率是由梯度消失/爆炸引起的结论。

ResNet于2015年由微软研究院的研究人员提出,引入了一种名为残余网络的新架构。

1、残差网路

为了解决梯度消失/爆炸的问题,该架构引入了残差块的概念。在这个网络中,我们使用一种称为跳过连接的技术。跳过连接通过跳过中间的一些层将一个层的激活连接到其他层。这就形成了一个残块。通过将这些剩余的块堆叠在一起形成Resnets。

这个网络背后的方法不是层学习底层映射,而是允许网络拟合残差映射。所以我们不用H(x)初始映射,让网络适合。

F(x) := H(x) - x which gives H(x) := F(x) + x.

深度学习残差网络,深度学习,人工智能,残差网络,ResNet
添加这种类型的跳过连接的优点是,如果任何层损害了体系结构的性能,那么将通过正则化跳过它。因此,这可以训练一个非常深的神经网络,而不会出现梯度消失/爆炸引起的问题。本文作者在CIFAR-10数据集的100-1000层上进行了实验。

还有一种类似的方法叫做“高速公路网”,这些网络也采用跳线连接。与LSTM类似,这些跳过连接也使用参数门。这些门决定有多少信息通过跳过连接。然而,这种体系结构并没有提供比ResNet体系结构更好的准确性。

2、网络架构

该网络采用受VGG-19启发的34层平面网络架构,并增加了快捷连接。然后,这些快捷连接将架构转换为剩余网络。
深度学习残差网络,深度学习,人工智能,残差网络,ResNet

3、代码运行

使用Tensorflow和Keras API,我们可以从头开始设计ResNet架构(包括残块)。下面是不同的ResNet架构的实现。对于这个实现,我们使用CIFAR-10数据集。该数据集包含10个不同类别(飞机、汽车、鸟、猫、鹿、狗、青蛙、马、船和卡车)等的60,000张32×32彩色图像。该数据集可以通过keras进行评估。datasets API函数。

第1步:首先,我们导入keras模块及其api。这些api有助于构建ResNet模型的体系结构。

代码:导入库

# Import Keras modules and its important APIs
import keras
from keras.layers import Dense, Conv2D, BatchNormalization, Activation
from keras.layers import AveragePooling2D, Input, Flatten
from keras.optimizers import Adam
from keras.callbacks import ModelCheckpoint, LearningRateScheduler
from keras.callbacks import ReduceLROnPlateau
from keras.preprocessing.image import ImageDataGenerator
from keras.regularizers import l2
from keras import backend as K
from keras.models import Model
from keras.datasets import cifar10
import numpy as np
import os

第2步:现在,我们设置ResNet架构所需的不同超参数。我们还对数据集做了一些预处理,为训练做准备。

代码:设置训练超参数

# Setting Training Hyperparameters
batch_size = 32  # original ResNet paper uses batch_size = 128 for training
epochs = 200
data_augmentation = True
num_classes = 10
  
# Data Preprocessing 
subtract_pixel_mean = True
n = 3
  
# Select ResNet Version
version = 1
  
# Computed depth of 
if version == 1:
    depth = n * 6 + 2
elif version == 2:
    depth = n * 9 + 2
  
# Model name, depth and version
model_type = 'ResNet % dv % d' % (depth, version)
  
# Load the CIFAR-10 data.
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
  
# Input image dimensions.
input_shape = x_train.shape[1:]
  
# Normalize data.
x_train = x_train.astype('float32') / 255
x_test = x_test.astype('float32') / 255
  
# If subtract pixel mean is enabled
if subtract_pixel_mean:
    x_train_mean = np.mean(x_train, axis = 0)
    x_train -= x_train_mean
    x_test -= x_train_mean
  
# Print Training and Test Samples 
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')
print('y_train shape:', y_train.shape)
  
# Convert class vectors to binary class matrices.
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)

第3步:在这一步中,我们根据epoch的个数来设置学习率。随着迭代次数的增加,学习率必须降低以保证更好的学习。

代码:设置不同epoch数的LR

# Setting LR for different number of Epochs
def lr_schedule(epoch):
    lr = 1e-3
    if epoch > 180:
        lr *= 0.5e-3
    elif epoch > 160:
        lr *= 1e-3
    elif epoch > 120:
        lr *= 1e-2
    elif epoch > 80:
        lr *= 1e-1
    print('Learning rate: ', lr)
    return lr

第4步:定义基本的ResNet构建块,可以用来定义ResNet V1和V2架构。

代码:基本的ResNet构建块

# Basic ResNet Building Block
  
  
def resnet_layer(inputs,
                 num_filters=16,
                 kernel_size=3,
                 strides=1,
                 activation='relu',
                 batch_normalization=True,
    conv=Conv2D(num_filters,
                  kernel_size=kernel_size,
                  strides=strides,
                  padding='same',
                  kernel_initializer='he_normal',
                  kernel_regularizer=l2(1e-4))
  
    x=inputs
    if conv_first:
        x = conv(x)
        if batch_normalization:
            x = BatchNormalization()(x)
        if activation is not None:
            x = Activation(activation)(x)
    else:
        if batch_normalization:
            x = BatchNormalization()(x)
        if activation is not None:
            x = Activation(activation)(x)
        x = conv(x)
    return x

第5步:定义基于我们上面定义的ResNet构建块的ResNet V1架构:

代码:ResNet V1架构

def resnet_v1(input_shape, depth, num_classes=10):
  
    if (depth - 2) % 6 != 0:
        raise ValueError('depth should be 6n + 2 (eg 20, 32, 44 in [a])')
    # Start model definition.
    num_filters = 16
    num_res_blocks = int((depth - 2) / 6)
  
    inputs = Input(shape=input_shape)
    x = resnet_layer(inputs=inputs)
    # Instantiate the stack of residual units
    for stack in range(3):
        for res_block in range(num_res_blocks):
            strides = 1
            if stack & gt
            0 and res_block == 0:  # first layer but not first stack
                strides = 2  # downsample
            y = resnet_layer(inputs=x,
                             num_filters=num_filters,
                             strides=strides)
            y = resnet_layer(inputs=y,
                             num_filters=num_filters,
                             activation=None)
            if stack & gt
            0 and res_block == 0:  # first layer but not first stack
                # linear projection residual shortcut connection to match
                # changed dims
                x = resnet_layer(inputs=x,
                                 num_filters=num_filters,
                                 kernel_size=1,
                                 strides=strides,
                                 activation=None,
                                 batch_normalization=False)
            x = keras.layers.add([x, y])
            x = Activation('relu')(x)
        num_filters *= 2
  
    # Add classifier on top.
    # v1 does not use BN after last shortcut connection-ReLU
    x = AveragePooling2D(pool_size=8)(x)
    y = Flatten()(x)
    outputs = Dense(num_classes,
                    activation='softmax',
                    kernel_initializer='he_normal')(y)
  
    # Instantiate model.
    model = Model(inputs=inputs, outputs=outputs)
    return model

第6步:定义基于我们上面定义的ResNet构建块的ResNet V2架构:

代码:ResNet V2架构

# ResNet V2 architecture
def resnet_v2(input_shape, depth, num_classes=10):
    if (depth - 2) % 9 != 0:
        raise ValueError('depth should be 9n + 2 (eg 56 or 110 in [b])')
    # Start model definition.
    num_filters_in = 16
    num_res_blocks = int((depth - 2) / 9)
  
    inputs = Input(shape=input_shape)
    # v2 performs Conv2D with BN-ReLU on input before splitting into 2 paths
    x = resnet_layer(inputs=inputs,
                     num_filters=num_filters_in,
                     conv_first=True)
  
    # Instantiate the stack of residual units
    for stage in range(3):
        for res_block in range(num_res_blocks):
            activation = 'relu'
            batch_normalization = True
            strides = 1
            if stage == 0:
                num_filters_out = num_filters_in * 4
                if res_block == 0:  # first layer and first stage
                    activation = None
                    batch_normalization = False
            else:
                num_filters_out = num_filters_in * 2
                if res_block == 0:  # first layer but not first stage
                    strides = 2    # downsample
  
            # bottleneck residual unit
            y = resnet_layer(inputs=x,
                             num_filters=num_filters_in,
                             kernel_size=1,
                             strides=strides,
                             activation=activation,
                             batch_normalization=batch_normalization,
                             conv_first=False)
            y = resnet_layer(inputs=y,
                             num_filters=num_filters_in,
                             conv_first=False)
            y = resnet_layer(inputs=y,
                             num_filters=num_filters_out,
                             kernel_size=1,
                             conv_first=False)
            if res_block == 0:
                # linear projection residual shortcut connection to match
                # changed dims
                x = resnet_layer(inputs=x,
                                 num_filters=num_filters_out,
                                 kernel_size=1,
                                 strides=strides,
                                 activation=None,
                                 batch_normalization=False)
            x = keras.layers.add([x, y])
  
        num_filters_in = num_filters_out
  
    # Add classifier on top.
    # v2 has BN-ReLU before Pooling
    x = BatchNormalization()(x)
    x = Activation('relu')(x)
    x = AveragePooling2D(pool_size=8)(x)
    y = Flatten()(x)
    outputs = Dense(num_classes,
                    activation='softmax',
                    kernel_initializer='he_normal')(y)
  
    # Instantiate model.
    model = Model(inputs=inputs, outputs=outputs)
    return model

第7步:下面的代码用于训练和测试我们上面定义的ResNet v1和v2架构:

代码:Main函数

# Main function 
if version == 2:
    model = resnet_v2(input_shape = input_shape, depth = depth)
else:
    model = resnet_v1(input_shape = input_shape, depth = depth)
  
model.compile(loss ='categorical_crossentropy',
              optimizer = Adam(learning_rate = lr_schedule(0)),
              metrics =['accuracy'])
model.summary()
print(model_type)
  
# Prepare model saving directory.
save_dir = os.path.join(os.getcwd(), 'saved_models')
model_name = 'cifar10_% s_model.{epoch:03d}.h5' % model_type
if not os.path.isdir(save_dir):
    os.makedirs(save_dir)
filepath = os.path.join(save_dir, model_name)
  
# Prepare callbacks for model saving and for learning rate adjustment.
checkpoint = ModelCheckpoint(filepath = filepath,
                             monitor ='val_acc',
                             verbose = 1,
                             save_best_only = True)
  
lr_scheduler = LearningRateScheduler(lr_schedule)
  
lr_reducer = ReduceLROnPlateau(factor = np.sqrt(0.1),
                               cooldown = 0,
                               patience = 5,
                               min_lr = 0.5e-6)
  
callbacks = [checkpoint, lr_reducer, lr_scheduler]
  
# Run training, with or without data augmentation.
if not data_augmentation:
    print('Not using data augmentation.')
    model.fit(x_train, y_train,
              batch_size = batch_size,
              epochs = epochs,
              validation_data =(x_test, y_test),
              shuffle = True,
              callbacks = callbacks)
else:
    print('Using real-time data augmentation.')
    # This will do preprocessing and realtime data augmentation:
    datagen = ImageDataGenerator(
        # set input mean to 0 over the dataset
        featurewise_center = False,
        # set each sample mean to 0
        samplewise_center = False,
        # divide inputs by std of dataset
        featurewise_std_normalization = False,
        # divide each input by its std
        samplewise_std_normalization = False,
        # apply ZCA whitening
        zca_whitening = False,
        # epsilon for ZCA whitening
        zca_epsilon = 1e-06,
        # randomly rotate images in the range (deg 0 to 180)
        rotation_range = 0,
        # randomly shift images horizontally
        width_shift_range = 0.1,
        # randomly shift images vertically
        height_shift_range = 0.1,
        # set range for random shear
        shear_range = 0.,
        # set range for random zoom
        zoom_range = 0.,
        # set range for random channel shifts
        channel_shift_range = 0.,
        # set mode for filling points outside the input boundaries
        fill_mode ='nearest',
        # value used for fill_mode = "constant"
        cval = 0.,
        # randomly flip images
        horizontal_flip = True,
        # randomly flip images
        vertical_flip = False,
        # set rescaling factor (applied before any other transformation)
        rescale = None,
        # set function that will be applied on each input
        preprocessing_function = None,
        # image data format, either "channels_first" or "channels_last"
        data_format = None,
        # fraction of images reserved for validation (strictly between 0 and 1)
        validation_split = 0.0)
  
    # Compute quantities required for featurewise normalization
    # (std, mean, and principal components if ZCA whitening is applied).
    datagen.fit(x_train)
  
    # Fit the model on the batches generated by datagen.flow().
    model.fit_generator(datagen.flow(x_train, y_train, batch_size = batch_size),
                        validation_data =(x_test, y_test),
                        epochs = epochs, verbose = 1, workers = 4,
                        callbacks = callbacks)
  
# Score trained model.
scores = model.evaluate(x_test, y_test, verbose = 1)
print('Test loss:', scores[0])
print('Test accuracy:', scores[1])

4、结果与总结

在ImageNet数据集上,作者使用了152层的ResNet,其深度是VGG19的8倍,但参数仍然较少。在ImageNet测试集上,这些ResNets的集合产生的错误率仅为3.7%,这一结果赢得了ILSVRC 2015竞赛。在COCO对象检测数据集上,由于它的深度表示,也产生了28%的相对改进。
深度学习残差网络,深度学习,人工智能,残差网络,ResNet文章来源地址https://www.toymoban.com/news/detail-551312.html

  • 上面的结果表明,快捷连接将能够解决增加层数所带来的问题,因为当我们将层数从18层增加到34层时,ImageNet验证集上的错误率也会与普通网络不同而降低。
    深度学习残差网络,深度学习,人工智能,残差网络,ResNet
  • 下面是ImageNet测试集的结果。ResNet的前5名错误率为3.57%,是最低的,因此ResNet架构在2015年ImageNet分类挑战中排名第一。
    深度学习残差网络,深度学习,人工智能,残差网络,ResNet

到了这里,关于残差网络(ResNet) -深度学习(Residual Networks (ResNet) – Deep Learning)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 论文笔记:Deep Spatio-Temporal Residual Networks for Citywide Crowd FlowsPrediction

    2017 AAAI 使用时空残差网络ST-ResNet 进行 城市区域流入流出客流量预测 城市客流流入流出 根据经纬度将城市划分为网格 I×J   空间依赖性 时间依赖性 外部影响 北京出租车数据+纽约自行车数据 评价指标:RMSE      

    2024年02月16日
    浏览(34)
  • 经典神经网络论文超详细解读(五)——ResNet(残差网络)学习笔记(翻译+精读+代码复现)

    《Deep Residual Learning for Image Recognition》这篇论文是何恺明等大佬写的,在深度学习领域相当经典,在2016CVPR获得best paper。今天就让我们一起来学习一下吧! 论文原文:https://arxiv.org/abs/1512.03385 前情回顾: 经典神经网络论文超详细解读(一)——AlexNet学习笔记(翻译+精读)

    2024年02月08日
    浏览(37)
  • AIGC实战——深度学习 (Deep Learning, DL)

    深度学习 ( Deep Learning , DL ) 是贯穿所有生成模型 ( Generative Model ) 的共同特征,几乎所有复杂的生成模型都以深度神经网络为核心,深度神经网络能够学习数据结构中的复杂关系,而不需要预先提取数据特征。在本节中,我们将介绍深度学习基本概念,并利用 Keras 构建深度神

    2024年02月08日
    浏览(36)
  • 可信深度学习Trustworthy Deep Learning相关论文

    Survey An Overview of Catastrophic AI Risks. [paper] Connecting the Dots in Trustworthy Artificial Intelligence: From AI Principles, Ethics, and Key Requirements to Responsible AI Systems and Regulation. [paper] A Survey of Trustworthy Federated Learning with Perspectives on Security, Robustness, and Privacy. [paper] Adversarial Machine Learning: A Systemati

    2024年02月13日
    浏览(33)
  • Lecture 8 Deep Learning for NLP: Recurrent Networks

    Problem of N-gram Language Model N-gram 语言模型的问题 Cen be implemented using counts with smoothing 可以用平滑计数实现 Can be implemented using feed-forward neural networks 可以用前馈神经网络实现 Problem: limited context 问题:上下文限制 E.g. Generate sentences using trigram model: 例如:使用 trigram 模型生成句子

    2024年02月09日
    浏览(33)
  • 自然语言处理(七): Deep Learning for NLP: Recurrent Networks

    目录 1. N-gram Language Models 2. Recurrent Neural Networks 2.1 RNN Unrolled 2.2 RNN Training 2.3 (Simple) RNN for Language Model 2.4 RNN Language Model: Training 2.5 RNN Language Model: Generation 3. Long Short-term Memory Networks 3.1 Language Model… Solved? 3.2 Long Short-term Memory (LSTM) 3.3 Gating Vector 3.4 Simple RNN vs. LSTM 3.5 LSTM: Forget

    2023年04月13日
    浏览(40)
  • 自然语言处理(六): Deep Learning for NLP: Feedforward Networks

    目录 1. Deep Learning 1.2 Feed-forward NN 1.3 Neuron 1.4 Matrix Vector Notation 矩阵向量表示法 1.5 Output Layer 1.6 Learning from Data 1.7 Regularisation 正则化 1.8 Dropout 2. Applications in NLP 2.1 Topic Classification 2.2 Topic Classification - Training 2.3 Topic Classification - Prediction 2.4 Topic Classification - Improvements 2.5

    2023年04月09日
    浏览(34)
  • 深度学习笔记(kaggle课程《Intro to Deep Learning》)

    深度学习是一种机器学习方法,通过构建和训练深层神经网络来处理和理解数据。它模仿人脑神经系统的工作方式,通过多层次的神经网络结构来学习和提取数据的特征。深度学习在图像识别、语音识别、自然语言处理等领域取得了重大突破,并被广泛应用于人工智能技术中

    2024年02月13日
    浏览(43)
  • 神经网络的学习(Neural Networks: Learning)

    案例:假设神经网络的训练样本有𝑚个,每个包含一组输入𝑥和一组输出信号𝑦,𝐿表示神经网络层数,𝑆𝐼表示每层的 neuron 个数(𝑆𝑙表示输出层神经元个数),𝑆𝐿代表最后一层中处理单元的个数。 将神经网络的分类定义为两种情况:二类分类和多类分类, 二类分

    2024年01月24日
    浏览(33)
  • 解锁深度表格学习(Deep Tabular Learning)的关键:算术特征交互

    近日,阿里云人工智能平台PAI与浙江大学吴健、应豪超老师团队合作论文《Arithmetic Feature Interaction is Necessary for Deep Tabular Learning》正式在国际人工智能顶会AAAI-2024上发表。本项工作聚焦于深度表格学习中的一个核心问题:在处理结构化表格数据(tabular data)时,深度模型是否

    2024年04月17日
    浏览(31)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包