【LeetCode热题100】打卡第33天:环形链表&LRU缓存

这篇具有很好参考价值的文章主要介绍了【LeetCode热题100】打卡第33天:环形链表&LRU缓存。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

【LeetCode热题100】打卡第33天:环形链表&LRU缓存

⛅前言

大家好,我是知识汲取者,欢迎来到我的LeetCode热题100刷题专栏!

精选 100 道力扣(LeetCode)上最热门的题目,适合初识算法与数据结构的新手和想要在短时间内高效提升的人,熟练掌握这 100 道题,你就已经具备了在代码世界通行的基本能力。在此专栏中,我们将会涵盖各种类型的算法题目,包括但不限于数组、链表、树、字典树、图、排序、搜索、动态规划等等,并会提供详细的解题思路以及Java代码实现。如果你也想刷题,不断提升自己,就请加入我们吧!QQ群号:827302436。我们共同监督打卡,一起学习,一起进步。

博客主页💖:知识汲取者的博客

LeetCode热题100专栏🚀:LeetCode热题100

Gitee地址📁:知识汲取者 (aghp) - Gitee.com

Github地址📁:Chinafrfq · GitHub

题目来源📢:LeetCode 热题 100 - 学习计划 - 力扣(LeetCode)全球极客挚爱的技术成长平台

PS:作者水平有限,如有错误或描述不当的地方,恳请及时告诉作者,作者将不胜感激

环形链表

🔒题目

原题链接:142.环形链表II

【LeetCode热题100】打卡第33天:环形链表&LRU缓存,# LeetCode热题100,Programming practice,leetcode,链表

🔑题解

  • 解法一:Set集合

    昨天刚写完【LeetCode热题100】打卡第32天的题目,其中就遇到 环形链表I,也是使用这种方式解决的O(∩_∩)O

    public class Solution {
        public ListNode detectCycle(ListNode head) {
            Set<ListNode> set = new HashSet<>();
            while (head != null) {
                if (!set.add(head)) {
                    return head;
                }
                head = head.next;
            }
            return null;
        }
    }
    

    复杂度分析:

    • 时间复杂度: O ( n ) O(n) O(n)
    • 空间复杂度: O ( n ) O(n) O(n)

    其中 n n n 为数组中元素的个数

  • 解法二:快慢指针

    这个快慢指针用起来就要比【LeetCode热题100】打卡第32天的题目 的那道环形链表I 要难的多了

    详解参考 K神,真的是强,佩服b( ̄▽ ̄)d,这里我给出一些我的理解

    假设head到环入口出要走a步,环的节点数为b,则:

    1. fast于slow相遇,fast一定是比slow多走nb

      s , f = 2 s = s + n b → s = n b s,f=2s=s+nb → s=nb s,f=2s=s+nbs=nb

    2. a+nb一定是在环入口出

    3. 第一次相遇后,我们将fast重置到head处,这样就能保障fast和slow相遇一定是是a+nb,此时两者在环入口相遇

      f = 0 , s = n b → f = a , s = a + n b f=0,s=nb→f=a,s=a+nb f=0,s=nbf=a,s=a+nb

    这里面具有很严密的数据逻辑推理在里面!

    public class Solution {
        public ListNode detectCycle(ListNode head) {
            ListNode fast = head;
            ListNode slow = head;
            while (fast != null){
                slow = slow.next;
                fast = fast.next;
                if (fast!=null){
                    fast = fast.next;
                }
                if (fast == slow){
                    break;
                }
            }
            if (fast==null){
                return null;
            }
            fast = head;
            while (fast!=slow){
                slow = slow.next;
                fast = fast.next;
            }
            return fast;
        }
    }
    

    复杂度分析:

    • 时间复杂度: O ( n ) O(n) O(n)
    • 空间复杂度: O ( n ) O(n) O(n)

    其中 n n n 为数组中元素的个数

LRU缓存

🔒题目

原题链接:146.LRU缓存

【LeetCode热题100】打卡第33天:环形链表&LRU缓存,# LeetCode热题100,Programming practice,leetcode,链表

🔑题解

  • 解法一:Map标记法(超时,22个示例数据过了20个)

    这是最开始的思路,直接使用双Map,一个Map作为缓存,一个Map用于记录key的淘汰优先级,每次进行get或put操作时,未操作的key的淘汰优先级都自增1,如果缓存已满,则根据淘汰优先级进行淘汰。总的来说这个思路还是挺简单的,但是这代码看着就像“屎山代码”w(゚Д゚)w,感觉可以进行优化

    【LeetCode热题100】打卡第33天:环形链表&LRU缓存,# LeetCode热题100,Programming practice,leetcode,链表

    【LeetCode热题100】打卡第33天:环形链表&LRU缓存,# LeetCode热题100,Programming practice,leetcode,链表

    class LRUCache {
    
        // 缓存
        private Map<Integer, Integer> cache;
        // 用于标记,值越大越优先淘汰
        private Map<Integer, Integer> flag;
        // 最大容量
        private int MAX_CAPACITY;
    
    
        public LRUCache(int capacity) {
            MAX_CAPACITY = capacity;
            cache =  new HashMap<>(capacity);
            flag = new HashMap<>(capacity);
        }
    
        /**
         * 从缓存中获取值
         */
        public int get(int key) {
            if (cache.containsKey(key)){
                // 当前元素置0,其它元素值+1
                flag.put(key, 0);
                increment(key);
                return cache.get(key);
            }
            return -1;
        }
    
        /**
         * 除key以外的都自增
         */
        private void increment(int key) {
            for (Integer i : flag.keySet()) {
                if (i != key){
                    flag.put(i, flag.get(i)+1);
                }
            }
        }
    
        /**
         * 往缓存中添加元素
         */
        public void put(int key, int value) {
            if (cache.size() < MAX_CAPACITY){
                // 缓存容量足够,直接添加,并将新加入元素标记值置为初值0
                cache.put(key, value);
                flag.put(key, 0);
                increment(key);
                return;
            }
            if (cache.containsKey(key)){
                // 缓存容量不够,但是当前添加的key已在缓存中存在,直接更新即可
                cache.put(key, value);
                flag.put(key, 0);
                increment(key);
                return;
            }
            // 缓存容量不够且key不在缓存中,使用 LRU 策略淘汰缓存中的数据
            int i = getDieOutKey();
            cache.remove(i);
            cache.put(key, value);
            flag.put(key, 0);
            increment(key);
        }
    
        /**
         * 获取淘汰元素的索引
         */
        private int getDieOutKey() {
            int max = Integer.MIN_VALUE;
            int key = 0;
            for (Integer i : flag.keySet()) {
                if (flag.get(i)>max){
                    max = flag.get(i);
                    key = i;
                }
            }
            flag.remove(key);
            return key;
        }
    }
    

    复杂度分析:

    • 时间复杂度: O ( n ) O(n) O(n),每次put和get都需要调用increment方法,increment方法需要遍历整个map,getDieOutKey方法也需要遍历整个map,时间复杂度也是 O ( n ) O(n) O(n),但两者没有嵌套,所以总的时间复杂度是 O ( n ) O(n) O(n)
    • 空间复杂度: O ( n ) O(n) O(n)

    其中 n n n 为缓存的大小

    代码优化:使用队列代替Map标记(时间优化)

    上面我们是利用Map集合对存入缓存中的元素进行一个标记,每次往缓存中存入和获取,都需要遍历一遍 flag ,并且删除时也需要遍历一遍 flag,这就导致虽然看着时间复杂度是 ( n ) (n) (n),但是对于频繁的操作耗时是非常多的。

    上面的map标记法,我们可以知道最大耗时在于定位 flag 中最大的value,为了解决定位问题,我们可以采用队列,而不是map,队列具有先进先出的特点(队尾进,对头出),这就意味着我们可以将最旧的元素放到对头,最新的元素放到队尾。

    【LeetCode热题100】打卡第33天:环形链表&LRU缓存,# LeetCode热题100,Programming practice,leetcode,链表

    【LeetCode热题100】打卡第33天:环形链表&LRU缓存,# LeetCode热题100,Programming practice,leetcode,链表

    class LRUCache {
    
        // 缓存
        private Map<Integer, Integer> map;
        // 用于LRU淘汰
        private Queue<Integer> queue;
        // 最大容量
        private int MAX_CAPACITY;
    
        public LRUCache(int capacity) {
            MAX_CAPACITY = capacity;
            map = new HashMap<>(capacity);
            queue = new LinkedList<>();
        }
    
        public int get(int key) {
            if (map.containsKey(key)){
                queue.remove(key);
                queue.offer(key);
                return map.get(key);
            }
            return -1;
        }
    
        public void put(int key, int value) {
            if (map.containsKey(key)){
                // 缓存中存在该key,直接更新
                queue.remove(key);
                queue.offer(key);
                map.put(key, value);
                return;
            }
            if (map.size() < MAX_CAPACITY){
                // 缓存不存在该key,但当前缓存容量足够,直接添加
                queue.offer(key);
                map.put(key, value);
                return;
            }
            // 缓存容量不足,移除最先进入队列的元素
            int first = queue.poll();
            queue.add(key);
            map.remove(first);
            map.put(key, value);
        }
    }
    

    复杂度分析:

    • 时间复杂度: O ( n ) O(n) O(n)queue.remove()方法需要遍历链表,时间复杂度是 O ( n ) O(n) O(n)
    • 空间复杂度: O ( n ) O(n) O(n)

    n为缓存中最大能存储元素的个数

    PS:显然这段代码比上上面那段代码就要好的多了,但是提交只能够击败5%的 Java选手,这说明还有更好的方法

  • 解法二:利用LinkedHashMap

    LinkedHashMap底层是使用一个 Map+双向链表,LinkedHashMap有一个最大容量

    class LRUCache extends LinkedHashMap<Integer, Integer>{
        // 最大容量
        private int capacity;
        
        public LRUCache(int capacity) {
            // 调用构造方法,第三个参数设置为true时,当LinkedHashMap达到最大容量时
            // 底层回采用LRU策略,移除最旧的元素
            super(capacity, 0.75F, true);
            this.capacity = capacity;
        }
    
        public int get(int key) {
            return super.getOrDefault(key, -1);
        }
    
        public void put(int key, int value) {
            super.put(key, value);
        }
    
        /**
        * 设置淘汰时机,当超过最大容量时按照LRU策略淘汰最旧的值
        */
        @Override
        protected boolean removeEldestEntry(Map.Entry<Integer, Integer> eldest) {
            return size() > capacity; 
        }
    }
    

    复杂度分析:

    • 时间复杂度: O ( 1 ) O(1) O(1)
    • 空间复杂度: O ( n ) O(n) O(n)

    其中 n n n 为缓存中元素的最大个数文章来源地址https://www.toymoban.com/news/detail-551945.html

    参照LinkedHashMap源码手写一个简易版的LinkedHashMap

    前面我们使用队列进行移除操作,时间复杂度是 O ( n ) O(n) O(n),因为队列底层是采用了单链表,单链表删除中间节点需要先遍历链表定位到要删除的节点的前驱节点,而现在我们使用一个双链表数据结构,我们直接可以通过 前驱指针pre 定位到要删除的节点前驱节点,进行删除操作,这就大大提高了删除的效率,从而提高了时间,但是提高了额外的内存开销(典型的空间换时间)

    【LeetCode热题100】打卡第33天:环形链表&LRU缓存,# LeetCode热题100,Programming practice,leetcode,链表

    class LRUCache {
    
        /**
         * 定义一个双链表
         */
        private class DLinkedList {
            int key;
            int value;
            // 前驱指针,用于维护当前节点与前驱节点的关系
            DLinkedList pre;
            // 后继指针,用于维护当前节点与后继节点的关系
            DLinkedList next;
            public DLinkedList() {}
            public DLinkedList(int key, int value) {
                this.key = key;
                this.value = value;
            }
        }
    
        /**
         * 缓存最大容量
         */
        private int capacity;
        /**
         * 缓存中的元素的个数(空间换时间)
         */
        private int size;
        /**
         * 双链表的头节点指针
         */
        DLinkedList head;
        /**
         * 双链表的尾节点指针
         */
        DLinkedList tail;
        /**
         * 缓存
         */
        private Map<Integer, DLinkedList> cache = new HashMap<>();
    
    
        public LRUCache(int capacity) {
            this.capacity = capacity;
            this.size = 0;
            this.head = new DLinkedList();
            this.tail = new DLinkedList();
            this.head.next = this.tail;
            this.tail.pre = this.head;
        }
    
        /**
         * 从缓存中取值
         */
        public int get(int key) {
            DLinkedList node = cache.get(key);
            if (node == null) {
                // 缓存未命中,直接返回-1
                return -1;
            }
            // 缓存命中,则更新双链表(将命中节点更新为双链表的头节点)
            moveToHead(node);
            return node.value;
        }
    
        /**
         * 往缓存中存值
         */
        public void put(int key, int value) {
            DLinkedList node = cache.get(key);
            if (node != null) {
                // 缓存命中,则更新双链表并直接返回命中的值
                node.value = value;
                moveToHead(node);
                return;
            }
            // 缓存未命中,需要判断当前缓存的容量是否充足
            if (size == capacity) {
                // 缓存容量已满,需要采用LRU策略移除最旧的值(也就是双链表的尾节点)
                DLinkedList tailNode = remove(tail.pre);
                cache.remove(tailNode.key);
                size--;
            }
            // 将新增的节点添加到链表头部,并存入缓存
            DLinkedList newNode = new DLinkedList(key, value);
            add(newNode);
            cache.put(key, newNode);
            size++;
        }
    
        /**
         * 将节点更新为双链表的头节点
         */
        public void moveToHead(DLinkedList node) {
            // 先移除,后添加,即可将节点更新为头节点
            remove(node);
            add(node);
        }
    
        /**
         * 移除节点(并返回被移除的节点)
         */
        private DLinkedList remove(DLinkedList node) {
            if (node.next == tail) {
                // 要移除的节点是尾节点
                node.pre.next = tail;
                tail.pre = node.pre;
            } else {
                // 要移除的节点是中间节点
                node.pre.next = node.next;
                node.next.pre = node.pre;
            }
            return node;
        }
    
        /**
         * 添加节点(从双链表的头部添加)
         */
        private void add(DLinkedList node) {
            node.pre = head;
            node.next = head.next;
            head.next.pre = node;
            head.next = node;
        }
    
    }
    

    复杂度分析:

    • 时间复杂度: O ( 1 ) O(1) O(1)
    • 空间复杂度: O ( n ) O(n) O(n)

    其中 n n n 为缓存中元素的最大个数

到了这里,关于【LeetCode热题100】打卡第33天:环形链表&LRU缓存的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【LeetCode热题100】打卡第44天:倒数第30~25题

    大家好,我是知识汲取者,欢迎来到我的LeetCode热题100刷题专栏! 精选 100 道力扣(LeetCode)上最热门的题目,适合初识算法与数据结构的新手和想要在短时间内高效提升的人,熟练掌握这 100 道题,你就已经具备了在代码世界通行的基本能力。在此专栏中,我们将会涵盖各种

    2024年02月15日
    浏览(37)
  • 【LeetCode热题100】打卡第38天:课程表&实现前缀树

    大家好,我是知识汲取者,欢迎来到我的LeetCode热题100刷题专栏! 精选 100 道力扣(LeetCode)上最热门的题目,适合初识算法与数据结构的新手和想要在短时间内高效提升的人,熟练掌握这 100 道题,你就已经具备了在代码世界通行的基本能力。在此专栏中,我们将会涵盖各种

    2024年02月17日
    浏览(52)
  • LeetCode 热题 100 | 链表(上)

    目录 1  基础知识 1.1  空指针 1.2  结构体 1.3  指针访问 1.4  三目运算符 2  160. 相交链表 3  206. 反转链表 4  234. 回文链表 菜鸟做题第三周,语言是 C++ 1  基础知识 1.1  空指针 使用 nullptr 来判断是否为空指针: “NULL 在 C++ 中就是 0,这是因为在 C++ 中 void* 类型是不允许隐式

    2024年02月19日
    浏览(40)
  • LeetCode热题100——链表

    给你两个单链表的头节点 headA 和 headB ,请你找出并返回两个单链表相交的起始节点。如果两个链表不存在相交节点,返回 null 。 给你单链表的头节点 head ,请你反转链表,并返回反转后的链表。 给你一个单链表的头节点 head ,请你判断该链表是否为回文链表。如果是,返回

    2024年02月05日
    浏览(41)
  • LeetCode 热题100——链表专题

    2.俩数相加(题目链接) 思路:这题题目首先要看懂,以示例1为例  即  342+465=807,而产生的新链表为7-0-8. 可以看成简单的从左向右,低位到高位的加法运算,4+6=10,逢10进1,新链表第三位为3+4+1(第二位进的1),需要注意的的点是当9-9-9和9-9-9-9相加,相当于9-9-9-0和9-9-9-9相加

    2024年02月05日
    浏览(36)
  • 【LeetCode热题100】打卡第42天:滑动窗口最大值&搜索二维矩阵II

    大家好,我是知识汲取者,欢迎来到我的LeetCode热题100刷题专栏! 精选 100 道力扣(LeetCode)上最热门的题目,适合初识算法与数据结构的新手和想要在短时间内高效提升的人,熟练掌握这 100 道题,你就已经具备了在代码世界通行的基本能力。在此专栏中,我们将会涵盖各种

    2024年02月10日
    浏览(49)
  • LeetCode 热题100——链表专题(一)

    2.俩数相加(题目链接) 思路:这题题目首先要看懂,以示例1为例  即  342+465=807,而产生的新链表为7-0-8. 可以看成简单的从左向右,低位到高位的加法运算,4+6=10,逢10进1,新链表第三位为3+4+1(第二位进的1),需要注意的的点是当9-9-9和9-9-9-9相加,相当于9-9-9-0和9-9-9-9相加

    2024年02月03日
    浏览(41)
  • 【LeetCode热题100】打卡第39天:数组中第K个最大元素&最大正方形

    大家好,我是知识汲取者,欢迎来到我的LeetCode热题100刷题专栏! 精选 100 道力扣(LeetCode)上最热门的题目,适合初识算法与数据结构的新手和想要在短时间内高效提升的人,熟练掌握这 100 道题,你就已经具备了在代码世界通行的基本能力。在此专栏中,我们将会涵盖各种

    2024年02月16日
    浏览(44)
  • 【LeetCode刷题-链表】--146.LRU缓存

    方法一:哈希表+双向链表 使用一个哈希表和一个双向链表维护所有在缓存中的键值对 双向链表按照被使用的顺序存储了这些键值对,靠近头部的键值对是最近使用的,而靠近尾部的键值对是最久使用的 哈希表即为普通的哈希映射,通过缓存数据的键映射到其在双向链表中的

    2024年02月05日
    浏览(44)
  • 【LeetCode热题100】【链表】两两交换链表中的节点

    题目链接:24. 两两交换链表中的节点 - 力扣(LeetCode) 实际上是两个两个一组颠倒顺序,可以用k=2使用【LeetCode热题100】【链表】K 个一组翻转链表-CSDN博客 但可以更简单,就先看两个,先取第二个的指针,递归颠倒第二个后面的节点,链接到第一个节点上,然后把第一个节

    2024年04月13日
    浏览(69)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包