多个消费者订阅一个Kafka的Topic(使用@KafkaListener和KafkaTemplate)

这篇具有很好参考价值的文章主要介绍了多个消费者订阅一个Kafka的Topic(使用@KafkaListener和KafkaTemplate)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

记录:465

场景:一个Producer在一个Topic发布消息,多个消费者Consumer订阅Kafka的Topic。每个Consumer指定一个特定的ConsumerGroup,达到一条消息被多个不同的ConsumerGroup消费。

版本:JDK 1.8,Spring Boot 2.6.3,kafka_2.12-2.8.0,spring-kafka-2.8.2。

Kafka集群安装:https://blog.csdn.net/zhangbeizhen18/article/details/131156084

1.基础概念

Topic:Kafka根据Topic对消息进行归类,发布到Kafka的每条消息都需要指定一个Topic。

Producer:消息生产者,向Broker发送消息的客户端。

Consumer:消息消费者,从Broker读取消息的客户端。

ConsumerGroup:每个Consumer属于一个特定的ConsumerGroup,一条消息可以被多个不同的ConsumerGroup消费;但是一个ConsumerGroup中只能有一个Consumer能够消费该消息。

publish:发布,使用Producer向Kafka写入数据。

subscribe:订阅,使用Consumer从Kafka读取数据。

2.微服务中配置Kafka信息

(1)在pom.xml添加依赖

<dependency>
  <groupId>org.springframework.kafka</groupId>
  <artifactId>spring-kafka</artifactId>
  <version>2.8.2</version>
</dependency>

请知悉:spring-kafka框架底层使用了原生的kafka-clients。本例对应版本:3.0.0。

(2)在application.yml中配置Kafka信息

配置参考官网的configuration:https://kafka.apache.org/documentation/

(1)application.yml配置内容

spring:
  kafka:
    #kafka集群的IP和端口,格式:(ip:port)
    bootstrap-servers:
      - 192.168.19.161:29092
      - 192.168.19.162:29092
      - 192.168.19.163:29092
    #生产者
    producer:
      #客户端发送服务端失败的重试次数
      retries: 2
      #多个记录被发送到同一个分区时,生产者将尝试将记录一起批处理成更少的请求.
      #此设置有助于提高客户端和服务器的性能,配置控制默认批量大小(以字节为单位)
      batch-size: 16384
      #生产者可用于缓冲等待发送到服务器的记录的总内存字节数(以字节为单位)
      buffer-memory: 33554432
      #指定key使用的序列化类
      key-serializer: org.apache.kafka.common.serialization.StringSerializer
      #指定value使用的序列化类
      value-serializer: org.apache.kafka.common.serialization.StringSerializer
      #生产者producer要求leader节点在考虑完成请求之前收到的确认数,用于控制发送记录在服务端的持久化
      #acks=0,设置为0,则生产者producer将不会等待来自服务器的任何确认.该记录将立即添加到套接字(socket)缓冲区并视为已发送.在这种情况下,无法保证服务器已收到记录,并且重试配置(retries)将不会生效(因为客户端通常不会知道任何故障),每条记录返回的偏移量始终设置为-1.
      #acks=1,设置为1,leader节点会把记录写入本地日志,不需要等待所有follower节点完全确认就会立即应答producer.在这种情况下,在follower节点复制前,leader节点确认记录后立即失败的话,记录将会丢失.
      #acks=all,acks=-1,leader节点将等待所有同步复制副本完成再确认记录,这保证了只要至少有一个同步复制副本存活,记录就不会丢失.
      acks: -1
    consumer:
      #开启consumer的偏移量(offset)自动提交到Kafka
      enable-auto-commit: true
      #consumer的偏移量(offset)自动提交的时间间隔,单位毫秒
      auto-commit-interval: 1000
      #在Kafka中没有初始化偏移量或者当前偏移量不存在情况
      #earliest,在偏移量无效的情况下,自动重置为最早的偏移量
      #latest,在偏移量无效的情况下,自动重置为最新的偏移量
      #none,在偏移量无效的情况下,抛出异常.
      auto-offset-reset: latest
      #一次调用poll返回的最大记录条数
      max-poll-records: 500
      #请求阻塞的最大时间(毫秒)
      fetch-max-wait: 500
      #请求应答的最小字节数
      fetch-min-size: 1
      #心跳间隔时间(毫秒)
      heartbeat-interval: 3000
      #指定key使用的反序列化类
      key-deserializer: org.apache.kafka.common.serialization.StringDeserializer
      #指定value使用的反序列化类
      value-deserializer: org.apache.kafka.common.serialization.StringDeserializer

(2)解析

配置类在spring boot自动注解包:spring-boot-autoconfigure-2.6.3.jar。

类:org.springframework.boot.autoconfigure.kafka.KafkaProperties。

使用@ConfigurationProperties注解使其生效,前缀是:spring.kafka。

spring-kafka框架对操作Kafka单机版和Kafka集群版的配置差异:

在于bootstrap-servers属性,单机版配置一个IP:端口对。集群版配置多个IP:端口对就行。

(3)加载逻辑

Spring Boot微服务在启动时,Spring Boot会读取application.yml的配置信息,根据配置内容在spring-boot-autoconfigure-2.6.3.jar找到KafkaProperties并注入到对应属性。Spring Boot微服务在启动完成后,KafkaProperties的配置信息在Spring环境中就能无缝使用。

Spring的spring-kafka框架将KafkaProperties配置信息注入到KafkaTemplate操作生产者Producer。

Spring的spring-kafka框架使用KafkaProperties和@KafkaListener操作Kafka的消费者Consumer。

3.生产者(ChangjiangDeltaCityProducerController)

(1)示例代码

@RestController
@RequestMapping("/hub/example/delta/producer")
@Slf4j
public class ChangjiangDeltaCityProducerController {
  //1.注入KafkaTemplate
  @Autowired
  private KafkaTemplate<String, String> kafkaTemplate;
  //2.定义Kafka的Topic
  private final String topicName = "hub-topic-city-delta";
  @GetMapping("/f01_1")
  public Object f01_1(String msgContent) {
    try {
      //3.获取业务数据对象
      String uuid=UUID.randomUUID().toString().replace("-","");
      long now=System.currentTimeMillis();
      String msgKey = "delta" + ":" + uuid + ":" + now;
      MsgDto msgDto = MsgDto.buildDto(uuid,now,msgContent);
      String msgData = JSONObject.toJSONString(msgDto);
      log.info("KafkaProducer向Kafka集群的Topic: {},写入Key:", topicName);
      log.info(msgKey);
      log.info("KafkaProducer向Kafka集群的Topic: {},写入Data:", topicName);
      log.info(msgData);
      //4.使用KafkaTemplate向Kafka集群写入数据(topic,key,data)
      kafkaTemplate.send(topicName, msgKey, msgData);
    } catch (Exception e) {
      log.info("Producer写入Topic异常.");
      e.printStackTrace();
    }
    return "写入成功";
  }
}

(2)解析代码

使用KafkaTemplate向Kafka集群的Topic:hub-topic-city-delta写入JSON字符串数据,发布一条消息,给订阅的消费者消费。

4.消费者一(HangzhouCityConsumer)

(1)示例代码

@Component
@Slf4j
public class HangzhouCityConsumer {
  // 1.定义Kafka的Topic
  private final String topicName = "hub-topic-city-delta";
  // 2.使用@KafkaListener监听Kafka集群的Topic
  @KafkaListener(
      topics = {topicName},
      groupId = "hub-topic-city-delta-group-hangzhou")
  public void consumeMsg(ConsumerRecord<?, ?> record) {
    try {
        //3.KafkaConsumer从集群中监听的消息存储在ConsumerRecord
        String msgKey= (String) record.key();
        String msgData = (String) record.value();
        log.info("HangzhouCityConsumer从Kafka集群中的Topic:{},消费的原始数据的Key:",topicName);
        log.info(msgKey);
        log.info("HangzhouCityConsumer从Kafka集群中的Topic:{},消费的原始数据的Data:",topicName);
        log.info(msgData);
    } catch (Exception e) {
        log.info("HangzhouCityConsumer消费Topic异常.");
        e.printStackTrace();
    }
  }
}

(2)解析代码

使用@KafkaListener的属性topics指定监听的Topic:hub-topic-city-delta。

使用@KafkaListener的属性groupId 指定消费组:hub-topic-city-delta-group-hangzhou。

5.消费者二(ShanghaiCityConsumer)

(1)示例代码

@Component
@Slf4j
public class ShanghaiCityConsumer {
  // 1.定义Kafka的Topic
  private final String topicName = "hub-topic-city-delta";
  // 2.使用@KafkaListener监听Kafka集群的Topic
  @KafkaListener(
          topics = {topicName},
          groupId = "hub-topic-city-delta-group-shanghai")
  public void consumeMsg(ConsumerRecord<?, ?> record) {
    try {
        //3.KafkaConsumer从集群中监听的消息存储在ConsumerRecord
        String msgKey = (String) record.key();
        String msgData = (String) record.value();
        log.info("ShanghaiCityConsumer从Kafka集群中的Topic:{},消费的原始数据的Key:", topicName);
        log.info(msgKey);
        log.info("ShanghaiCityConsumer从Kafka集群中的Topic:{},消费的原始数据的Data:", topicName);
        log.info(msgData);
    } catch (Exception e) {
        log.info("ShanghaiCityConsumer消费Topic异常.");
        e.printStackTrace();
    }
  }
}

(2)解析代码

使用@KafkaListener的属性topics指定监听的Topic:hub-topic-city-delta。

使用@KafkaListener的属性groupId 指定消费组:hub-topic-city-delta-group-shanghai。

6.测试

(1)使用Postman测试,调用生产者写入数据

请求RUL:http://127.0.0.1:18208/hub-208-kafka/hub/example/delta/producer/f01_1

参数:msgContent="长三角经济带实力强大"

(2)生产者日志

KafkaProducer向Kafka集群的Topic: hub-topic-city-delta,写入Key:
delta:b5a669933f4041588d53d53c22888943:1687789723647
KafkaProducer向Kafka集群的Topic: hub-topic-city-delta,写入Data:
{"msgContent":"长三角经济带实力强大","publicTime":"2023-06-26 22:28:43","uuid":"b5a669933f4041588d53d53c22888943"}

(3)消费者一日志

HangzhouCityConsumer从Kafka集群中的Topic:hub-topic-city-delta,消费的原始数据的Key:
delta:b5a669933f4041588d53d53c22888943:1687789723647
HangzhouCityConsumer从Kafka集群中的Topic:hub-topic-city-delta,消费的原始数据的Data:
{"msgContent":"长三角经济带实力强大","publicTime":"2023-06-26 22:28:43","uuid":"b5a669933f4041588d53d53c22888943"}

(4)消费者二日志

ShanghaiCityConsumer从Kafka集群中的Topic:hub-topic-city-delta,消费的原始数据的Key:
delta:b5a669933f4041588d53d53c22888943:1687789723647
ShanghaiCityConsumer从Kafka集群中的Topic:hub-topic-city-delta,消费的原始数据的Data:
{"msgContent":"长三角经济带实力强大","publicTime":"2023-06-26 22:28:43","uuid":"b5a669933f4041588d53d53c22888943"}

(5)结论

每个Consumer指定一个特定的ConsumerGroup,一条消息可以被多个不同的ConsumerGroup消费。

7.辅助类

@Data
@Builder
public class MsgDto implements Serializable {
  private String uuid;
  private String publicTime;
  private String msgContent;
  public static MsgDto buildDto(String uuid,
                      long publicTime,
                      String msgContent) {
      return builder().uuid(uuid)
          .publicTime(DateUtil.formatDateTime(new Date(publicTime)))
          .msgContent(msgContent).build();
  }
}

以上,感谢。

2023年6月26日文章来源地址https://www.toymoban.com/news/detail-552039.html

到了这里,关于多个消费者订阅一个Kafka的Topic(使用@KafkaListener和KafkaTemplate)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Kafka3.0.0版本——消费者(独立消费者消费某一个主题中某个分区数据案例__订阅分区)

    1.1、案例需求 创建一个独立消费者,消费firstTopic主题 0 号分区的数据,所下图所示: 1.2、案例代码 生产者往firstTopic主题 0 号分区发送数据代码 消费者消费firstTopic主题 0 分区数据代码 1.3、测试 在 IDEA 中执行消费者程序,如下图: 在 IDEA 中执行生产者程序 ,在控制台观察

    2024年02月09日
    浏览(45)
  • kafka 基础概念、命令行操作(查看所有topic、创建topic、删除topic、查看某个Topic的详情、修改分区数、发送消息、消费消息、 查看消费者组 、更新消费者的偏移位置)

    kafka官网 Broker   一台kafka服务器就是一个broker,可容纳多个topic。一个集群由多个broker组成; Producer   生产者,即向kafka的broker-list发送消息的客户端; Consumer   消费者,即向kafka的broker-list订阅消息的客户端; Consumer Group   消费者组是 逻辑上的一个订阅者 ,由多个

    2024年02月01日
    浏览(61)
  • Kafka系列:查看Topic列表、消息消费情况、模拟生产者消费者

    执行topic删除命令时,出现提示 这条命令其实并不执行删除动作,仅仅是在zookeeper上标记该topic要被删除而已,同时也提醒用户一定要提前打开delete.topic.enable开关,否则删除动作是不会执行的。 解决办法: a)在server.properties中设置delete.topic.enable参数为ture b)如下操作: 1.登

    2023年04月26日
    浏览(59)
  • Linux安装Kafka,创建topic、生产者、消费者

    1.创建安装目录/usr/local/kafka mkdir /usr/local/kafka 2.进入安装包目录 cd /usr/local/kafka  3.下载安装包 wget https://downloads.apache.org/kafka/3.3.1/kafka_2.12-3.3.1.tgz 4.解压安装包 tar -zxvf kafka_2.12-3.3.1.tgz 5.进入cd kafka_2.12-3.3.1目录 cd kafka_2.12-3.3.1/ 6.修改zookeeper配置 cat ./config/zookeeper.properties | grep

    2023年04月17日
    浏览(50)
  • Kafka - 主题Topic与消费者消息Offset日志记录机制

    可以根据业务类型,分发到不同的Topic中,对于每一个Topic,下面可以有多个分区(Partition)日志文件: kafka 下的Topic的多个分区,每一个分区实质上就是一个队列,将接收到的消息暂时存储到队列中,根据配置以及消息消费情况来对队列消息删除。 可以这么来理解Topic,Partitio

    2024年02月03日
    浏览(54)
  • 如何查看kafka的topic的消费者组有没有积压

    Kafka 自带的命令行工具 kafka-consumer-groups.sh 来查看消费者组的消费情况,包括是否有积压。 具体步骤如下: 打开命令行终端,进入 Kafka 安装目录下的 bin 文件夹。 输入以下命令,查看消费者组的消费情况: ./kafka-consumer-groups.sh --bootstrap-server --describe --group kafka-consumer-groups.

    2023年04月18日
    浏览(89)
  • kafka配置大全broker、topic、生产者和消费者等配置介绍

    每个kafka broker中配置文件 server.properties 默认必须配置的属性如下: **bootstrap.servers** - 指定生产者客户端连接kafka集群所需的broker地址列表,格式为host1:port1,host2:port2,可以设置一个或多个。这里并非需要所有的broker地址,因为生产者会从给定的broker里寻找其它的broker。 **key

    2024年02月05日
    浏览(47)
  • Kafka系列之:记录一次Kafka Topic分区扩容,但是下游flink消费者没有自动消费新的分区的解决方法

    生产环境Kafka集群压力大,Topic读写压力大,消费的lag比较大,因此通过扩容Topic的分区,增大Topic的读写性能 理论上下游消费者应该能够自动消费到新的分区,例如flume消费到了新的分区,但是实际情况是存在flink消费者没有消费到新的分区 出现无法消费topic新的分区这种情况

    2024年02月14日
    浏览(56)
  • Kafka消费者订阅指定主题(subscribe)或分区(assign)详解

    在连接Kafka服务器消费数据前,需要创建Kafka消费者进行拉取数据,需要配置相应的参数,比如设置消费者所属的消费者组名称、连接的broker服务器地址、序列号和反序列化的方式等配置。 更多消费者配置可参考官网: https://kafka.apache.org/documentation/#consumerconfigs 订阅主题(s

    2023年04月24日
    浏览(45)
  • 笔记:配置多个kafka生产者和消费者

    如果只有一个kafka,那么使用自带的KafkaAutoConfiguration配置类即可,对应已有属性类KafkaProperties,属性前缀为spring.kafka.xxx; 本文记录配置多个kafka的情况,即在KafkaAutoConfiguration的基础上,自定义额外的kafka生产者和消费者。 适用场景:需要消费来源于不同kafka的消息、需要在不

    2024年02月15日
    浏览(54)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包