RabbitMQ ---- Work Queues

这篇具有很好参考价值的文章主要介绍了RabbitMQ ---- Work Queues。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

工作队列(又称任务队列)的注销思想是避免立即执行资源密集型任务,而不得不等待它完成。相反我们安排任务在之后执行。我们把任务封装为消息并将其发送到队列。在后台运行的工作进程将弹出任务并最终执行作业。当有多个工作线程时,这些工作线程将一起处理这些任务。

1. 轮训分发消息

实现两个工作线程,一个消息发送线程,看看他们两个工作线程是如何工作的。

1.1 抽取工具类

/**
 * RabbitMQ 的工具类
 * @author dell
 * @date 2023/7/7 16:49
 */

public class RabbitMqUtils {

    public static Channel getChannel() throws Exception {
        ConnectionFactory factory = new ConnectionFactory();
        factory.setHost("192.168.10.100");
        factory.setUsername("admin");
        factory.setPassword("123");
        Connection connection = factory.newConnection();
        Channel channel = connection.createChannel();
        return channel;
    }

}

1.2 启动两个工作线程

/**
 * 工作线程
 * @author dell
 * @date 2023/7/7 16:56
 */

public class Worker01 {

    public static final String QUEUE_NAME = "hello";

    public static void main(String[] args) throws Exception {
        Channel channel = RabbitMqUtils.getChannel();
        DeliverCallback deliverCallback = (consumerTag, delivery) -> {
            String receivedMessage = new String(delivery.getBody());
            System.out.println("接收消息: " + receivedMessage);
        };
        CancelCallback cancelCallback = (consumerTag) -> {
            System.out.println(consumerTag + "消息消费被中断");
        };
        System.out.println("C1消费者启动等待消费......");
        channel.basicConsume(QUEUE_NAME, true, deliverCallback, cancelCallback);
    }

}

RabbitMQ ---- Work Queues,RabbitMQ,rabbitmq,分布式
RabbitMQ ---- Work Queues,RabbitMQ,rabbitmq,分布式

1.3 启动一个发送线程

/**
 * 发送线程
 * @author dell
 * @date 2023/7/7 17:07
 */

public class Task01 {

    public static final String QUEUE_NAME = "hello";

    public static void main(String[] args) throws Exception {
        try (Channel channel = RabbitMqUtils.getChannel();) {
            channel.queueDeclare(QUEUE_NAME, false, false, false, null);
            Scanner scanner = new Scanner(System.in);
            while (scanner.hasNext()) {
                String message = scanner.next();
                channel.basicPublish("", QUEUE_NAME, null, message.getBytes());
                System.out.println("发送消息完成: " + message);
            }
        }
    }

}

1.4 结果展示

通过产生者总共发送 4 个消息,消费者1和消费者2分别分得两个消息,并且按照有序的一个接收一次消息。

RabbitMQ ---- Work Queues,RabbitMQ,rabbitmq,分布式
RabbitMQ ---- Work Queues,RabbitMQ,rabbitmq,分布式
RabbitMQ ---- Work Queues,RabbitMQ,rabbitmq,分布式

2. 消息应答

2.1 概念

消费者完成一个任务可能需要一段时间,如何其中一个消费者处理一个长的任务并仅只完成了部分突然它挂掉了,会发生什么情况。RabbitMQ 一旦向消费者传递了一条消息,便立即将该消息标记为删除。在这种情况下,突然有个消费者挂掉了,我们将丢失正在处理的消息。以及后续发送给该消费这的消息,因为它无法接收到。

为了保证消息在发送过程中不丢失,rabbitmq 引入消息应答机制,消息应答就是:消费者在接收到消息并且处理该消息之后,告诉 rabbitmq 它已经处理了,rabbitmq 可以把该消息删除了。

2.2 自动应答

消息发送后立即被认为已经传送成功,这种模式需要在高吞吐量和数据传输安全性方面做权衡,因为这种模式如果消息在接收到之前,消费者那边出现连接或者 channel 关闭,那么消息就丢失了,当然另一方面这种模式消费者那边可以传递过载的消息,没有对传递的消息数量进行限制,当然这样有可能使得消费者这边由于接收太多还来不及处理的消息,导致这些消息的积压,最终使得内存耗尽,最终这些消费者线程被操作系统杀死,所以这种模式仅适用在消费者可以高效并以某种速率能够处理这些消息的情况下使用。

2.3 消息应答的方法

Channel.basicAck(用于肯定确认): RabbitMQ 已知道该消息并且成功的处理消息,可以将其丢弃了

Channel.basicNack(用于否定确认)

Channel.basicReject(用于否定确认): 与 Channel.basicNack 相比少一个参数,不处理该消息了直接拒绝,可以将其丢弃了

2.4 Multiple 的解释

**手动应答的好处是可以批量应答并且减少网络拥堵 **

RabbitMQ ---- Work Queues,RabbitMQ,rabbitmq,分布式

true:代表批量应答 channel 上未应答的消息
比如说 channel 上有传送 tag 的消息 5,6,7,8 当前 tag 是 8 那么此时 5-8 的这些还未应答的消息都会被确认收到消息应答

false:同上面相比
只会应答 tag=8 的消息 5,6,7 这三个消息依然不会被确认收到消息应答

RabbitMQ ---- Work Queues,RabbitMQ,rabbitmq,分布式

2.5 消息自动重新入队

如果消费者由于某些原因失去连接(其通道已关闭,连接已关闭或 TCP 连接丢失),导致消息未发送 ACK 确认,RabbitMQ 将了解到消息未完全处理,并将对其重新排队。如果此时其他消费者可以处理,它将很快将其重新分发给另一个消费者。这样,即使某个消费者偶尔死亡,也可以确保不会丢失任何消息。

RabbitMQ ---- Work Queues,RabbitMQ,rabbitmq,分布式

2.6 消息手动应答代码

默认消息采用的是自动应答,所以我们要想实现消息消费过程中不丢失,需要把自动应答改为手动应答,消费者在上面代码的基础上增加下面画红色部分代码。

消息生产者

/**
 * 消息生产者
 *
 * @author dell
 * @date 2023/7/7 22:53
 */

public class Task02 {

    public static final String TASK_QUEUE_NAME = "ack_queue";

    public static void main(String[] args) throws Exception {
        Channel channel = RabbitMqUtils.getChannel();
        channel.queueDeclare(TASK_QUEUE_NAME, false, false, false, null);
        Scanner scanner = new Scanner(System.in);
        System.out.println("请输入信息");
        while (scanner.hasNext()) {
            String message = scanner.nextLine();
            channel.basicPublish("", TASK_QUEUE_NAME, null, message.getBytes("UTF-8"));
            System.out.println("生产者发出消息: " + message);
        }
    }

}

消费者01

/**
 * 消费者01
 * @author dell
 * @date 2023/7/7 23:00
 */

public class Work03 {

    public static final String ACK_QUEUE_NAME = "ack_queue";

    public static void main(String[] args) throws Exception {
        Channel channel = RabbitMqUtils.getChannel();
        System.out.println("C1等待接收消息处理时间较短");
        DeliverCallback deliverCallback = (consumeTag, delivery) -> {
            String message = new String(delivery.getBody());
            SleepUtils.sleep(1);
            System.out.println("接收到消息: " + message);
            /**
             * 1. 消息标记tag
             * 2. 是否批量应答未应答消息
             */
            channel.basicAck(delivery.getEnvelope().getDeliveryTag(), false);
        };
        boolean autoAck = false;
        channel.basicConsume(ACK_QUEUE_NAME, autoAck, deliverCallback, (consumerTag) -> {
            System.out.println(consumerTag + "消费者取消消费接口回调逻辑");
        });
    }

}

消费者02

/**
 * 消费者02
 * @author dell
 * @date 2023/7/7 23:07
 */

public class Work04 {

    public static final String ACK_QUEUE_NAME = "ack_queue";

    public static void main(String[] args) throws Exception {
        Channel channel = RabbitMqUtils.getChannel();
        System.out.println("C2等待接收消息处理时间较长");
        DeliverCallback deliverCallback = (consumeTag, delivery) -> {
            String message = new String(delivery.getBody());
            SleepUtils.sleep(30);
            System.out.println("接收到消息: " + message);
            /**
             * 1. 消息标记tag
             * 2. 是否批量应答未应答消息
             */
            channel.basicAck(delivery.getEnvelope().getDeliveryTag(), false);
        };
        boolean autoAck = false;
        channel.basicConsume(ACK_QUEUE_NAME, autoAck, deliverCallback, (consumerTag) -> {
            System.out.println(consumerTag + "消费者取消消费接口回调逻辑");
        });
    }

}

睡眠工具类

/**
 * 睡眠工具类
 * @author dell
 * @date 2023/7/7 16:49
 */

public class SleepUtils {
    public static void sleep(int second) {
        try {
            Thread.sleep(1000 * second);
        } catch (InterruptedException _ignored) {
            Thread.currentThread().interrupt();
        }
    }
}

2.7 手动应答效果演示

正常情况下消息发送方发送两个消息 C1 和 C2 分别接收到消息并进行处理

RabbitMQ ---- Work Queues,RabbitMQ,rabbitmq,分布式

在发送者发送消息 dd,发出消息之后把 C2 消费者停掉,按理说该 C2 来处理该消息,但是它处理的时间较长,在还未处理完,也就是说 C2 还没有执行 ack 代码的时候,C2 被停掉了,此时会看到消息被 C1 接收到了,说明消息 dd 被重新入队,然后分配给能处理消息的 C1 处理。

RabbitMQ ---- Work Queues,RabbitMQ,rabbitmq,分布式

RabbitMQ ---- Work Queues,RabbitMQ,rabbitmq,分布式

3. RabbitMQ 持久化

3.1 概念

刚刚我们已经看到了如何处理任务不丢失的情况,但是如何保障当 RabbitMQ 服务停掉以后消息生产者发送过来的消息不丢失。默认情况下 RabbitMQ 退出或由于某种原因崩溃时,它忽视队列和消息,除非告知它不要这样做。确保消息不会丢失需要做两件事:我们需要将队列和消息都标记为持久化。

3.2 队列如何实现持久化

之前我们创建的队列都是非持久化的,rabbitmq 如果重启的化,该队列就会被删除掉,如果要队列实现持久化 需要在声明队列的时候把 durable 参数设置为持久化

RabbitMQ ---- Work Queues,RabbitMQ,rabbitmq,分布式

但是需要注意的就是如果之前声明的队列不是持久化的,需要把原先队列先删除,或者重新创建一个持久化的队列,不然就会出现错误

RabbitMQ ---- Work Queues,RabbitMQ,rabbitmq,分布式

以下为控制台中持久化与非持久化队列的 UI 显示区

RabbitMQ ---- Work Queues,RabbitMQ,rabbitmq,分布式

这个时候即使重启 rabbitmq 队列也依然存在

3.3 消息实现持久化

要想让消息实现持久化需要在消息生产者修改代码,MessageProperties.PERSISTENT_TEXT_PLAIN 添加这个属性。

RabbitMQ ---- Work Queues,RabbitMQ,rabbitmq,分布式

将消息标记为持久化并不能完全保证不会丢失消息。尽管它告诉 RabbitMQ 将消息保存到磁盘,但是这里依然存在当消息刚准备存储在磁盘的时候 但是还没有存储完,消息还在缓存的一个间隔点。此时并没有真正写入磁盘。持久性保证并不强,但是对于我们的简单任务队列而言,这已经绰绰有余了。如果需要更强有力的持久化策略,参考后边课件发布确认章节。

3.4 不公平分发

在最开始的时候我们学习到 RabbitMQ 分发消息采用的轮训分发,但是在某种场景下这种策略并不是很好,比方说有两个消费者在处理任务,其中有个消费者 1 处理任务的速度非常快,而另外一个消费者 2 处理速度却很慢,这个时候我们还是采用轮训分发的化就会到这处理速度快的这个消费者很大一部分时间处于空闲状态,而处理慢的那个消费者一直在干活,这种分配方式在这种情况下其实就不太好,但是 RabbitMQ 并不知道这种情况它依然很公平的进行分发。

为了避免这种情况,我们可以设置参数 channel.basicQos(1);

RabbitMQ ---- Work Queues,RabbitMQ,rabbitmq,分布式

RabbitMQ ---- Work Queues,RabbitMQ,rabbitmq,分布式

意思就是如果这个任务我还没有处理完或者我还没有应答你,你先别分配给我,我目前只能处理一个任务,然后 rabbitmq 就会把该任务分配给没有那么忙的那个空闲消费者,当然如果所有的消费者都没有完成手上任务,队列还在不停的添加新任务,队列有可能就会遇到队列被撑满的情况,这个时候就只能添加新的 worker 或者改变其他存储任务的策略。

3.5 预取值

本身消息的发送就是异步发送的,所以在任何时候,channel 上肯定不止只有一个消息另外来自消费者的手动确认本质上也是异步的。因此这里就存在一个未确认的消息缓冲区,因此希望开发人员能 限制此缓冲区的大小,以避免缓冲区里面无限制的未确认消息问题。 这个时候就可以通过使用 basic.qos 方法设置“预取计数”值来完成的。 该值定义通道上允许的未确认消息的最大数量。 一旦数量达到配置的数量,RabbitMQ 将停止在通道上传递更多消息,除非至少有一个未处理的消息被确认,例如,假设在通道上有未确认的消息 5、6、7,8,并且通道的预取计数设置为 4,此时 RabbitMQ 将不会在该通道上再传递任何消息,除非至少有一个未应答的消息被 ack。比方说 tag=6 这个消息刚刚被确认 ACK,RabbitMQ 将会感知这个情况到并再发送一条消息。消息应答和 QoS 预取值对用户吞吐量有重大影响。通常,增加预取将提高向消费者传递消息的速度。 虽然自动应答传输消息速率是最佳的,但是,在这种情况下已传递但尚未处理的消息的数量也会增加,从而增加了消费者的 RAM 消耗 (随机存取存储器)应该小心使用具有无限预处理的自动确认模式或手动确认模式,消费者消费了大量的消息如果没有确认的话,会导致消费者连接节点的内存消耗变大,所以找到合适的预取值是一个反复试验的过程,不同的负载该值取值也不同 100 到 300 范围内的值通常可提供最佳的吞吐量,并且不会给消费者带来太大的风险。预取值为 1 是最保守的。当然这将使吞吐量变得很低,特别是消费者连接延迟很严重的情况下,特别是在消费者连接等待时间较长的环境中。对于大多数应用来说,稍微高一点的值将是最佳的。

RabbitMQ ---- Work Queues,RabbitMQ,rabbitmq,分布式文章来源地址https://www.toymoban.com/news/detail-553000.html

到了这里,关于RabbitMQ ---- Work Queues的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Rabbitmq----分布式场景下的应用

    如果单机模式忘记也可以看看这个快速回顾rabbitmq,在做学习 消息队列在使用过程中,面临着很多实际问题需要思考: 消息从发送,到消费者接收,会经理多个过程: 其中的每一步都可能导致消息丢失,常见的丢失原因包括: 发送时丢失: 生产者发送的消息未送达exchange 消

    2024年02月08日
    浏览(50)
  • 微服务技术栈SpringCloud+RabbitMQ+Docker+Redis+搜索+分布式(五):分布式搜索 ES-下

    聚合(aggregations)可以实现对文档数据的统计、分析、运算。聚合常见的有三类: 桶(Bucket)聚合:用来对文档做分组 TermAggregation:按照文档字段值分组 Date Histogram:按照日期阶梯分组,例如一周为一组,或者一月为一组 度量(Metric)聚合:用以计算一些值,比如:最大值

    2024年03月26日
    浏览(65)
  • RabbitMQ——解决分布式事务问题,RabbitMQ的重要作用之一!!!通过可靠生产和可靠消费来完美解决!

    分布式事务是指涉及多个独立的计算机系统(也称为节点或参与者)之间的事务处理。在分布式系统中,每个节点可能各自拥有自己的数据存储和事务管理机制。分布式事务的目标是保证在跨多个节点执行的一系列操作可以以一致和可靠的方式执行和提交,即使在面对故障或

    2024年04月23日
    浏览(48)
  • Python爬虫分布式架构 - Redis/RabbitMQ工作流程介绍

    在大规模数据采集和处理任务中,使用分布式架构可以提高效率和可扩展性。本文将介绍Python爬虫分布式架构中常用的消息队列工具Redis和RabbitMQ的工作流程,帮助你理解分布式爬虫的原理和应用。 为什么需要分布式架构? 在数据采集任务中,单机爬虫可能面临性能瓶颈和资

    2024年02月11日
    浏览(45)
  • 分布式消息队列:Kafka vs RabbitMQ vs ActiveMQ

    在现代分布式系统中,消息队列是一种常见的异步通信模式,它可以帮助系统处理高并发、高可用性以及容错等问题。在这篇文章中,我们将深入探讨三种流行的分布式消息队列:Apache Kafka、RabbitMQ和ActiveMQ。我们将讨论它们的核心概念、算法原理、特点以及使用场景。 随着

    2024年02月02日
    浏览(63)
  • 微服务学习:SpringCloud+RabbitMQ+Docker+Redis+搜索+分布式

    目录 一、高级篇 二、面试篇 ==============实用篇============== day05-Elasticsearch01 1.初识elasticsearch 1.4.安装es、kibana 1.4.1.部署单点es 1.4.2.部署kibana 1.4.3.安装IK分词器 1.4.4.总结 2.索引库操作 2.1.mapping映射属性 2.2.索引库的CRUD 2.2.1.创建索引库和映射 2.2.2.查询索引库 2.2.3.修改索引库 2.

    2024年02月02日
    浏览(59)
  • (黑马出品_07)SpringCloud+RabbitMQ+Docker+Redis+搜索+分布式

    [此文档是在心向阳光的天域的博客加了一些有助于自己的知识体系,也欢迎大家关注这个大佬的博客](https://blog.csdn.net/sinat_38316216/category_12263516.html) [是这个视频](https://www.bilibili.com/video/BV1LQ4y127n4/?p=5spm_id_from=pageDrivervd_source=9beb0a2f0cec6f01c2433a881b54152c) 聚合 可以让我们极其方便

    2024年03月12日
    浏览(56)
  • 分布式搜索引擎(Elastic Search)+消息队列(RabbitMQ)部署(商城4)

    1、全文搜索 Elastic search可以用于实现全文搜索功能,例如商城中对商品搜索、搜索、分类搜索、订单搜索、客户搜索等。它支持复杂的查询语句、中文分词、近似搜索等功能,可以快速地搜索并返回匹配的结果。 2、日志分析 Elastic search可以用于实现实时日志分析,例

    2024年02月04日
    浏览(51)
  • 分布式 SpringCloudAlibaba、Feign与RabbitMQ实现MySQL到ES数据同步

    本文参考黑马 分布式Elastic search Elasticsearch是一款非常强大的开源搜索引擎,具备非常多强大功能,可以帮助我们从海量数据中快速找到需要的内容 同步调用 方案一:同步调用 基本步骤如下: hotel-demo对外提供接口,用来修改elasticsearch中的数据 酒店管理服务在完成数据库操

    2024年04月11日
    浏览(46)
  • (黑马出品_高级篇_04)SpringCloud+RabbitMQ+Docker+Redis+搜索+分布式

    [此文档是在心向阳光的天域的博客加了一些有助于自己的知识体系,也欢迎大家关注这个大佬的博客](https://blog.csdn.net/sinat_38316216/category_12263516.html) [是这个视频](https://www.bilibili.com/video/BV1LQ4y127n4/?p=5spm_id_from=pageDrivervd_source=9beb0a2f0cec6f01c2433a881b54152c) 消息队列在使用过程中,面

    2024年03月19日
    浏览(48)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包