numpy抽样函数 np.random.choice用法详解

这篇具有很好参考价值的文章主要介绍了numpy抽样函数 np.random.choice用法详解。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

顾名思义,抽样函数,定义如下:

def choice(a, size=None, replace=True, p=None):

参数说明:

a :待抽样的样本(一维数组或整数)
size: 输出大小,默认返回单个元素
replace : 抽样后的元素是否可重复,默认是
p: 每个样本点被抽样的概率,默认均匀抽样

举例如下:

从[1,2,3,4,5]中随机抽三个元素,可重复,概率分别为[0.1,0.1,0.2,0.1,0.5]

>>> a=[1,2,3,4,5]
>>> p=[0.1,0.1,0.2,0.1,0.5]
>>> np.random.choice(a,3,True,p)
array([5, 2, 5])

元素不可重复(即第三个参数replace设为false):

>>> np.random.choice(a,3,False,p)
array([2, 3, 5])

若输入a为整型,则表示从0到a-1中的整数样本进行抽样,如:

>>> np.random.choice(5,3,True)
array([4, 1, 3])
>>> np.random.choice(5,3,True)
array([0, 4, 2])

第二个参数size不设置,则只返回单个元素,如:文章来源地址https://www.toymoban.com/news/detail-554274.html

>>> np.random.choice(5)
2
>>> np.random.choice(5)
1

到了这里,关于numpy抽样函数 np.random.choice用法详解的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Numpy || np.array()函数用法指南

    numpy ndarray对象是一个n维数组对象,ndarray只能存储一系列相同元素。 numpy.array()使用说明:object是必须输入的参数,其余为可选参数。 创建存储元素类型不同的数组: 创建生成器: 当输入的object元素有不同类型时,将保留存储空间最大的类型: 当多维数组元素个数不一致时:

    2024年01月24日
    浏览(52)
  • np.sin( )函数 (Numpy库)

    np.sin(a)函数:对a中元素取正弦值。a可以是ndarray数据也可以是单个数据。 当a是单个数据时,np.sin(a)返回一个数据。 当a是ndarray数据时,np.sin(a)返回一个ndarray。 在上文中的np.pi表示π,但是它不可能那么精确真的是π,因此sin(np.pi)计算机计算出来不是准确的零,而是无限接近于

    2024年02月16日
    浏览(41)
  • Python numpy中random函数的使用

    np.random:随机数的生成 np.random.random() np.random.random(size) np.random.random([m,n])或np.random.random((m,n)) np.random.rand(m,n) 与np.random.random((m,n))作用一样,但是参数形式不同。 np.random.randint(a,b,size) np.random.uniform(a,b,size) np.random.normal():均值为0,标准差为1【无参默认值】 np.random.normal(a,b) n

    2023年04月08日
    浏览(36)
  • Python中Numpy的np.array详解

    np.array 用于创建一个新的NumPy数组对象。其语法如下: object :任何可用于初始化新数组的对象,例如列表、元组、数组等。 dtype :新数组的数据类型。如果未指定,则会从输入对象中推断数据类型。 其他参数允许进一步控制新数组的创建。 返回一个新的NumPy数组。 示例

    2024年02月08日
    浏览(48)
  • np.bincount函数的用法

    官网写的非常清晰了, 返回数组的数量比x中的最大值大1,它给出了每个索引值在x中出现的次数。下面,我举个例子让大家更好的理解一下: 最大值是7,所以bincount的值个数是8,索引从0到7,分别记录0到7各自出现的次数: 0出现1次,1出现3次,2出现1次,4,5,6都是0次,

    2024年01月24日
    浏览(49)
  • 【小呆的概率论学习笔记】抽样调查之用抽样样本估计母体数字特征

    1. 随机变量的数字特征 随机变量本质上是一个随机数,他以概率的形式取任何可能的取值,但是随机变量取值却有一定的规律,我们可以称之为随机变量的数字特征。最简明、最常用的随机变量的数字特征就是均值(或者说期望)和方差。 1.1 随机变量的均值(期望) 随机变

    2024年02月01日
    浏览(94)
  • 奇异值分解(SVD)和np.linalg.svd()函数用法

            奇异值分解是一种十分重要但又难以理解的矩阵处理技术,在机器学习中是最重要的分解没有之一的存在。那么,奇异值分解到底是在干什么呢?         矩阵 A 表示的是高维数据,通常情况下高维数据分布并不是雨露均沾的,而往往是厚此薄彼,集中分布

    2023年04月08日
    浏览(84)
  • python之np.sum()用法详解

        python库numpy提供的求和方法np.sum(),可以对数组和矩阵进行求和。sum方法可以接收多个参数,主要是数组a,坐标轴axis,数据类型dtype,初始值initial。其中,axis对于我们来说比较容易迷糊,这个值对求和有什么影响?一般来说,不设置axis这个参数,那么就是把数组或者矩阵所

    2024年02月02日
    浏览(38)
  • np.random.randint

    np.random.randint 是 Numpy 库中的一个函数,用于生成随机整数。该函数的用法如下: np.random.randint(low, high=None, size=None, dtype=\\\'l\\\') 其中: low:生成的随机整数的下限(包含) high:生成的随机整数的上限(不包含) size:生成数组的形状 dtype:生成数组的数据类型 例如,以下代码生成一

    2024年02月04日
    浏览(40)
  • np.random.normal

    np.random.normal函数是numpy库中用于生成正态分布(也叫高斯分布)随机数的函数。 normal------正态 np.random.normal(loc=0.0, scale=1.0, size=None) 该函数有三个参数:loc, scale, size loc表示随机数的期望值(对应着整个分布的中心)。float ,loc=0说明这一个以Y轴为对称轴的正态分布 scale表示随机数

    2024年02月06日
    浏览(41)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包