ChatGLM2-6B

这篇具有很好参考价值的文章主要介绍了ChatGLM2-6B。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

ChatGLM2-6B

  1. 项目基本情况
    GitHub:https://github.com/THUDM/ChatGLM2-6B/tree/main
    参考:https://mp.weixin.qq.com/s/11jCCeOpg1YbABIRLlnyvg
  2. 主要贡献
  3. 更强大的性能:基于 ChatGLM 初代模型的开发经验,我们全面升级了 ChatGLM2-6B 的基座模型。ChatGLM2-6B 使用了 GLM 的混合目标函数,经过了 1.4T 中英标识符的预训练与人类偏好对齐训练,评测结果显示,相比于初代模型,ChatGLM2-6B 在 MMLU(+23%)、CEval(+33%)、GSM8K(+571%) 、BBH(+60%)等数据集上的性能取得了大幅度的提升,在同尺寸开源模型中具有较强的竞争力。
    1. 更长的上下文:基于 FlashAttention 技术,我们将基座模型的上下文长度(Context Length)由 ChatGLM-6B 的 2K 扩展到了 32K,并在对话阶段使用 8K 的上下文长度训练,允许更多轮次的对话。但当前版本的 ChatGLM2-6B 对单轮超长文档的理解能力有限,我们会在后续迭代升级中着重进行优化。
    1. 更高效的推理:基于 Multi-Query Attention 技术,ChatGLM2-6B 有更高效的推理速度和更低的显存占用:在官方的模型实现下,推理速度相比初代提升了 42%,INT4 量化下,6G 显存支持的对话长度由 1K 提升到了 8K。
    1. 更开放的协议:ChatGLM2-6B 权重对学术研究完全开放,在获得官方的书面许可后,亦允许商业使用
      核心:More data 、 Flash-Attention 、 Multi-Query Attention
  4. 记录
  5. 环境安装
    git clone https://github.com/THUDM/ChatGLM2-6B
    conda create -n chatglm12-offical-py310 python=3.10 # 创建新环境
    source activate chatglm12-offical-py310 # 激活环境
    pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple

下载模型
git lfs install
git clone https://huggingface.co/THUDM/chatglm2-6b
2. 微调方式
3. 模型推理
1. 命令行调用
python cli_demo.py
2. 网页端调用
streamlit run web_demo2.py --server.address “0.0.0.0” – server.port 1892

1892为docker向外映射的端口
3. 接口部署
使用的是FastAPI进行接口的调用
python api.py

待续文章来源地址https://www.toymoban.com/news/detail-554293.html

到了这里,关于ChatGLM2-6B的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • ChatGLM2-6B_ An Open Bilingual Chat LLM _ 开源双语对话语言模型

    更强大的性能 :基于 ChatGLM 初代模型的开发经验,我们全面升级了 ChatGLM2-6B 的基座模型。ChatGLM2-6B 使用了 [GLM]的混合目标函数,经过了 1.4T 中英标识符的预训练与人类偏好对齐训练,评测结果显示,相比于初代模型,ChatGLM2-6B 在 MMLU(+23%)、CEval(+33%)、GSM8K(+571%) 、BB

    2024年04月14日
    浏览(41)
  • ChatGLM2-6B、ChatGLM-6B 模型介绍及训练自己数据集实战

    介绍 ChatGLM-6B是开源的文本生成式对话模型,基于General Language Model(GLM)框架,具有62亿参数,结合模型蒸馏技术,实测在2080ti显卡训练中上(INT4)显存占用 6G 左右, 优点 :1.较低的部署门槛: FP16 半精度下,ChatGLM-6B 需要至少 13GB 的显存进行推理,结合模型量化技术,一需求可以进一步

    2024年02月12日
    浏览(55)
  • AIGC - ChatGLM大模型:ChatGLM2-6B模型推理部署

    如果你要问我为什么直接部署ChatGLM2的模型? 因为当我在8月份在上海召开的全球人工智能大会上了解到清华-智谱发布的ChatGLM模型时,它已经发布了新的版本ChatGLM2,并且推理的效果提升了不少,那么本着只要最好的原则,我就直接上手先玩新版本了。 作为AIGC方面的小白来说

    2024年02月06日
    浏览(46)
  • 第五篇-ChatGLM2-6B模型下载

    可以使用如下代码下载 创建下载环境 编写代码 down_glm2.py snapshot_download其他参数 只允许下载部分类型的文件(以JSON为例) allow_patterns=‘*.json’, 不允许下载部分类型的文件(以JSON为例) ignore_patterns=[‘*.json’] 执行下 第一篇-ChatGLM-webui-Windows安装部署-CPU版 第二篇-二手工作站

    2024年02月14日
    浏览(73)
  • 三个开源大模型(chatglm2-6B, moss, llama)-chatglm2的测试

    chatglm2-6B 是清华大学开源的一款支持中英双语的对话语言模型。经过了 1.4T 中英标识符的预训练与人类偏好对齐训练,具有62 亿参数的 ChatGLM2-6B 已经能生成相当符合人类偏好的回答。结合模型量化技术,用户可以在消费级的显卡上进行本地部署(INT4 量化级别下最低只需 6G

    2024年02月11日
    浏览(63)
  • 使用Triton部署chatglm2-6b模型

    NVIDIA Triton Inference Server是一个针对CPU和GPU进行优化的云端和推理的解决方案。 支持的模型类型包括TensorRT、TensorFlow、PyTorch(meta-llama/Llama-2-7b)、Python(chatglm)、ONNX Runtime和OpenVino。 NVIDIA Triton Server是一个高性能的推断服务器,具有以下特点: 1. 高性能:Triton Server为使用GPU进行推

    2024年02月08日
    浏览(52)
  • ChatGLM2-6B模型推理流程和模型架构详解

    提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 因为本人在做大模型优化方面的研究,之前拆了ChatGLM2的源代码,看看能从哪些地方深入。结果刚拆完没多久,昨天,也就是10 月 27 日,智谱 AI 在 2023 中国计算机大会(CNCC)上发布了自研第三代对话大模

    2024年02月03日
    浏览(52)
  • 【AI】清华开源中英双语对话模型ChatGLM2-6B本地安装笔记

    首先,直接上资源,网盘中是ChatGLM2-6B源码及模型文件: 链接:https://pan.baidu.com/s/1DciporsVT-eSiVIAeU-YmQ 提取码:cssa 官方的Readme已经很详尽了,再写点安装博客有点画蛇添足。本着记录自己的工作内容的初衷,还是写一写吧,毕竟输出才是最好的学习。 本文记录了本地安装Cha

    2024年02月16日
    浏览(56)
  • 基于MacBook Pro M1芯片运行chatglm2-6b大模型

    ChatGLM2-6B代码地址 chatglm2-6b模型地址 Mac M1芯片部署 ChatGLM2-6B 是开源中英双语对话模型 ChatGLM-6B 的第二代版本,在保留了初代模型对话流畅、部署门槛较低等众多优秀特性的基础之上,ChatGLM2-6B 引入了如下新特性: 更强大的性能。 更长的上下文。 更高效的推理。 更开放的协

    2024年01月25日
    浏览(59)
  • 【AIGC】ChatGLM2-6B大模型 据称推理性能超越Chat4.0

    models ChatGLM2-6B 是开源中英双语对话模型 ChatGLM-6B 的第二代版本,在保留了初代模型对话流畅、部署门槛较低等众多优秀特性的基础之上,ChatGLM2-6B 引入了如下新特性: 更强大的性能:基于 ChatGLM 初代模型的开发经验,我们全面升级了 ChatGLM2-6B 的基座模型。ChatGLM2-6B 使用了

    2024年02月11日
    浏览(40)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包