PyTorch训练RNN, GRU, LSTM:手写数字识别

这篇具有很好参考价值的文章主要介绍了PyTorch训练RNN, GRU, LSTM:手写数字识别。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

pytorch 神经网络训练demo

数据集:MNIST

该数据集的内容是手写数字识别,其分为两部分,分别含有60000张训练图片和10000张测试图片

PyTorch训练RNN, GRU, LSTM:手写数字识别,Deep Learning,rnn,pytorch,gru
图片来源:https://tensornews.cn/mnist_intro/

神经网络:RNN, GRU, LSTM

# Imports
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.utils.data import DataLoader
import torchvision.datasets as datasets
import torchvision.transforms as transforms

# Set device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# Hyperparameters
input_size = 28
sequence_length = 28
num_layers = 2
hidden_size = 256
num_classes = 10
learning_rate = 0.001
batch_size = 64
num_epochs = 2

# Create a RNN
class RNN(nn.Module):
    def __init__(self, input_size, hidden_size, num_layers, num_classes):
        super(RNN, self).__init__()
        self.hidden_size = hidden_size
        self.num_layers = num_layers
        self.rnn = nn.RNN(input_size, hidden_size, num_layers, batch_first=True)
        self.fc = nn.Linear(hidden_size*sequence_length, num_classes) # fully connected
    
    def forward(self, x):
        h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device)

        # Forward Prop
        out, _ = self.rnn(x, h0)
        out = out.reshape(out.shape[0], -1)
        out = self.fc(out)

        return out
    
# Create a GRU
class RNN_GRU(nn.Module):
    def __init__(self, input_size, hidden_size, num_layers, num_classes):
        super(RNN_GRU, self).__init__()
        self.hidden_size = hidden_size
        self.num_layers = num_layers
        self.gru = nn.GRU(input_size, hidden_size, num_layers, batch_first=True)
        self.fc = nn.Linear(hidden_size*sequence_length, num_classes) # fully connected
    
    def forward(self, x):
        h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device)

        # Forward Prop
        out, _ = self.gru(x, h0)
        out = out.reshape(out.shape[0], -1)
        out = self.fc(out)

        return out


# Create a LSTM
class RNN_LSTM(nn.Module):
    def __init__(self, input_size, hidden_size, num_layers, num_classes):
        super(RNN_LSTM, self).__init__()
        self.hidden_size = hidden_size
        self.num_layers = num_layers
        self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)
        self.fc = nn.Linear(hidden_size*sequence_length, num_classes) # fully connected
    
    def forward(self, x):
        h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device)
        c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device)

        # Forward Prop
        out, _ = self.lstm(x, (h0, c0))
        out = out.reshape(out.shape[0], -1)
        out = self.fc(out)
        return out
    

# Load data
train_dataset = datasets.MNIST(root='dataset/', 
                               train=True, 
                               transform=transforms.ToTensor(),
                               download=True)
train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
test_dataset = datasets.MNIST(root='dataset/', 
                              train=False, 
                               transform=transforms.ToTensor(),
                               download=True)
test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=True)

# Initialize network 选择一个即可
model = RNN(input_size, hidden_size, num_layers, num_classes).to(device)
# model = RNN_GRU(input_size, hidden_size, num_layers, num_classes).to(device)
# model = RNN_LSTM(input_size, hidden_size, num_layers, num_classes).to(device)

# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)

# Train network
for epoch in range(num_epochs):
    # data: images, targets: labels
    for batch_idx, (data, targets) in enumerate(train_loader):
        # Get data to cuda if possible
        data = data.to(device).squeeze(1) # 删除一个张量中所有维数为1的维度 (N, 1, 28, 28) -> (N, 28, 28)
        targets = targets.to(device)

        # forward
        scores = model(data) # 64*10
        loss = criterion(scores, targets)

        # backward
        optimizer.zero_grad()
        loss.backward()

        # gradient descent or adam step
        optimizer.step()


# Check accuracy on training & test to see how good our model
def check_accuracy(loader, model):
    if loader.dataset.train:
        print("Checking accuracy on training data")
    else:
        print("Checking accuracy on test data")
    num_correct = 0
    num_samples = 0
    model.eval()

    with torch.no_grad(): # 不计算梯度
        for x, y in loader:
            x = x.to(device).squeeze(1)
            y = y.to(device)
            # x = x.reshape(x.shape[0], -1) # 64*784

            scores = model(x)# 64*10
            _, predictions = scores.max(dim=1) #dim=1,表示对每行取最大值,每行代表一个样本。
            num_correct += (predictions == y).sum()
            num_samples += predictions.size(0) # 64

        print(f'Got {num_correct} / {num_samples} with accuracy {float(num_correct)/float(num_samples)*100:.2f}%')

    model.train()

check_accuracy(train_loader, model)
check_accuracy(test_loader, model)


Result

RNN Result
Checking accuracy on training data
Got 57926 / 60000 with accuracy 96.54%
Checking accuracy on test data
Got 9640 / 10000 with accuracy 96.40%


GRU Result
Checking accuracy on training data
Got 59058 / 60000 with accuracy 98.43%
Checking accuracy on test data
Got 9841 / 10000 with accuracy 98.41%

LSTM Result
Checking accuracy on training data
Got 59248 / 60000 with accuracy 98.75%
Checking accuracy on test data
Got 9849 / 10000 with accuracy 98.49%

参考来源

【1】https://www.youtube.com/watch?v=Gl2WXLIMvKA&list=PLhhyoLH6IjfxeoooqP9rhU3HJIAVAJ3Vz&index=5文章来源地址https://www.toymoban.com/news/detail-554591.html

到了这里,关于PyTorch训练RNN, GRU, LSTM:手写数字识别的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 在树莓派上实现numpy的LSTM长短期记忆神经网络做图像分类,加载pytorch的模型参数,推理mnist手写数字识别

    这几天又在玩树莓派,先是搞了个物联网,又在尝试在树莓派上搞一些简单的神经网络,这次搞得是LSTM识别mnist手写数字识别 训练代码在电脑上,cpu就能训练,很快的: 然后需要自己在dataset里导出一些图片:我保存在了mnist_pi文件夹下,“_”后面的是标签,主要是在pc端导出

    2024年02月07日
    浏览(42)
  • 【文本到上下文 #5】:RNN、LSTM 和 GRU

            欢迎来到“完整的 NLP 指南:文本到上下文 #5”,这是我们对自然语言处理 (NLP) 和深度学习的持续探索。从NLP的基础知识到机器学习应用程序,我们现在深入研究了神经网络的复杂世界及其处理语言的深刻能力。         在本期中,我们将重点介绍顺序数据

    2024年01月16日
    浏览(38)
  • 深度学习实战——循环神经网络(RNN、LSTM、GRU)

           忆如完整项目/代码详见github: https://github.com/yiru1225 (转载标明出处 勿白嫖 star for projects thanks) 目录 系列文章目录 一、实验综述 1.实验工具及内容 2.实验数据 3.实验目标 4.实验步骤 二、循环神经网络综述 1.循环神经网络简介 1.1 循环神经网络背景 1.2 循环神经网络

    2023年04月24日
    浏览(41)
  • RNN 单元:分析 GRU 方程与 LSTM,以及何时选择 RNN 而不是变压器

            深度学习往往感觉像是在雪山上找到自己的道路。拥有坚实的原则会让你对做出决定更有信心。我们都去过那里         在上一篇文章中,我们彻底介绍并检查了 LSTM 单元的各个方面。有人

    2024年02月10日
    浏览(45)
  • [Pytorch]手写数字识别——真·手写!

    Github网址:https://github.com/diaoquesang/pytorchTutorials/tree/main 本教程创建于2023/7/31,几乎所有代码都有对应的注释,帮助初学者理解dataset、dataloader、transform的封装,初步体验调参的过程,初步掌握opencv、pandas、os等库的使用,😋纯手撸手写数字识别项目(为减少代码量简化了部分

    2024年02月14日
    浏览(77)
  • 一步一步详解LSTM网络【从RNN到LSTM到GRU等,直至attention】

    本文主要译至Understanding LSTM Networks并加上了部分笔者的见解,对于全面理解LSTM有一定的帮助。 人类不会每一秒都从头开始思考。 当你阅读这篇文章时,你会根据你对前面单词的理解来理解每个单词。 你不会扔掉所有东西,重新开始思考。 你的思想有坚持。Your thoughts have

    2024年02月05日
    浏览(37)
  • 算法项目(2)—— LSTM、RNN、GRU(SE注意力)、卡尔曼轨迹预测

    项目运行的方式(包教会) 项目代码 LSTM、RNN、GRU(SE注意力)、卡尔曼四种算法进行轨迹预测. 各种效果图 运行有问题? csdn上后台随时售后. 本文实现了三种深度学习算法加传统算法卡尔曼滤波进行轨迹预测, 预测效果图 首先看下不同模型的指标: 模型 RMSE LSTM 0.00288479607870

    2024年02月21日
    浏览(37)
  • CNN实现手写数字识别(Pytorch)

    CNN(卷积神经网络)主要包括卷积层、池化层和全连接层。输入数据经过多个卷积层和池化层提取图片信息后,最后经过若干个全连接层获得最终的输出。 CNN的实现主要包括以下步骤: 数据加载与预处理 模型搭建 定义损失函数、优化器 模型训练 模型测试 以下基于Pytorch框

    2024年02月03日
    浏览(93)
  • 【Pytorch+torchvision】MNIST手写数字识别

    深度学习入门项目,含代码详细解析 在本文中,我们将在 PyTorch 中构建一个简单的卷积神经网络,并使用 MNIST数据集 训练它识别手写数字。 MNIST包含70,000张手写数字图像: 60,000张用于培训,10,000张用于测试。图像是 灰度(即通道数为1) , 28x28像素 ,并且居中的,以减少预

    2024年02月14日
    浏览(39)
  • AI学习(4): PyTorch实战-手写数字识别

    在之前的文章中介绍了 PyTorch 的环境安装,和张量( tensor )的基本使用,为防止陷入枯燥的理论学习中,在这篇文章,我们将进行项目实战学习,项目主要内容: 基于 MNIST 数据集,实现一个手写数字识别的神经网络模型; @说明: 通过具体项目实战,我们可以初步了解:使用

    2024年02月21日
    浏览(45)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包