RSA加密解密(无数据大小限制,php、go、java互通实现)

这篇具有很好参考价值的文章主要介绍了RSA加密解密(无数据大小限制,php、go、java互通实现)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

RSA加解密中必须考虑到的**长度、明文长度和密文长度问题。明文长度需要小于**长度,而密文长度则等于**长度。因此当加密内容长度大于**长度时,有效的RSA加解密就需要对内容进行分段。

这是因为,RSA算法本身要求加密内容也就是明文长度m必须0<m<**长度n。如果小于这个长度就需要进行padding,因为如果没有padding,就无法确定解密后内容的真实长度,字符串之类的内容问题还不大,以0作为结束符,但对二进制数据就很难,因为不确定后面的0是内容还是内容结束符。而只要用到padding,那么就要占用实际的明文长度,于是实际明文长度需要减去padding字节长度。我们一般使用的padding标准有NoPPadding、OAEPPadding、PKCS1Padding等,其中PKCS#1建议的padding就占用了11个字节。

这样,对于1024长度的**。128字节(1024bits)-减去11字节正好是117字节,但对于RSA加密来讲,padding也是参与加密的,所以,依然按照1024bits去理解,但实际的明文只有117字节了。

生成:在线RSA公钥私钥生成

公钥:

-----BEGIN PUBLIC KEY-----
MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAyXyvN9fLKoixOZsD61cJ
QxzuRNCPdruj5ApBsr2jIakpF7yCXTh3OgKOzE2Y9O5r8kC7oDaDOhmcagPG4nsi
80HMGynh/Kwa3bUpPEySsHk6qYI4QAz8XS9IQ/y1GD9tsEgY/783fA1hKr/yPpfP
eVQdmlYd2GT4owUAoSS4zXcFNlUf/4dy052Jbb/0am6zONLC7BwyZ2d+znGhX2te
LdR9EegPZcpRBAf+litsmzhsRa3CO4vRWgexYOrsr07gCpwnEFEJYUnB8Zq/OfCr
qxqXnj+NkqTcMB6JUvyYWtfuWrRxgf8iHsau8Ds354BDv3t3TgMjpuWxpzX+eArc
9QIDAQAB
-----END PUBLIC KEY-----

公钥:文章来源地址https://www.toymoban.com/news/detail-554734.html

-----BEGIN RSA PRIVATE KEY-----
MIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQDJfK8318sqiLE5
mwPrVwlDHO5E0I92u6PkCkGyvaMhqSkXvIJdOHc6Ao7MTZj07mvyQLugNoM6GZxq
A8bieyLzQcwbKeH8rBrdtSk8TJKweTqpgjhADPxdL0hD/LUYP22wSBj/vzd8DWEq
v/I+l895VB2aVh3YZPijBQChJLjNdwU2VR//h3LTnYltv/RqbrM40sLsHDJnZ37O
caFfa14t1H0R6A9lylEEB/6WK2ybOGxFrcI7i9FaB7Fg6uyvTuAKnCcQUQlhScHx
mr858KurGpeeP42SpNwwHolS/Jha1+5atHGB/yIexq7wOzfngEO/e3dOAyOm5bGn
Nf54Ctz1AgMBAAECggEAUjvtV6FfblCz5Ir8IoU3ZojcRoHIy/DxhxUYk1cKyaY8
+08Y9esh3i9FEOVq1CyrKgh5i340OPZS/IHmHnGbZiUopL2HWpTzsiFKXy3xgM05
wA1B4AJszauKlxUA5JCeuB/09AybHKppSgVlXV6gcyh9nIwhSjyLrh1QkHRoaJK9
DebFWCGEFEl5mpKtklc9TQCmbwIJEVk2406BgKt1iCHqFqsXSEDXh0/HYAwLgLxg
mQTvKDqI1XTUqXYKXLEbTVpRqgdM9+LxsscoNxqX8vA/NnqpSVS1onVlyR3tYWQm
upN72wInNcJS3rLb8BX34rLvQguXOOpT4w5+kRfUUQKBgQD4f2+EU+J8f13+mO6v
k0iZ0kOURHAXrgf1oOQSAYGnU6vmnpLNkTUcHwUfCb06VwKvPAKK0hFBgirbaTeD
YQOLT7XJmX8vpt9baNT++51PtSMj61GnZaxeR7fd1MzL2NcGQshFJr8S4h7IWOTM
bFc/xLurmmbH1/Dzg+Y5CtTtHwKBgQDPkeq+yWa//OjGPxbKNZ/ES2+kat+/bKuG
m6RoSZ0WpAgGk5gyI/soLt3ARdd6xHW8OG+vMGuo1530V7B3GZVVIK3x7FcMJ61E
I7JQDUvTlM1IEXiQMQxBgTyrvKEhsc39H4UNoSLd0GobB4d5Re2jdghS3s4nKgRa
x5m4CAsfawKBgBB9fGv+mRAD77vecDBsiKvUfTGQnROlM9gD9j6PpQfykHy8VyeX
FDwqfs+BePIvJfl09QI7UHPVbHyk7c8lF/QdtQWMzxjdbQMG4OOO1PCeJ5fRnNiL
8bVL8xKgdXqtiA9dTSbxnEpngP1wkLZUFjIgHwgTNfDbDp1KSnPMmTanAoGAI9MM
T9dUy4fr6ONUnJu6sldOsnLboR8xT28nZfRmj1TKKdBpcSXyoBHOpfOn6AFmTJD0
/ah+vEpScax8wWGB+4pDW0CuGWPzrJH4oYZZ8u94qpqRU1mTwu56OS26JaWZZrl8
7khES0JAPeADyrN9+ztQ3nSj4fCHhd9zMWb5/HcCgYEAz0w883BdI1uvWq12IE5g
gJ62EDpSx0RoFlhq4ys6XvWGBywMdg4l3Ls2Xc+VY/jzE87f2hJdGTprHkEkQEHm
Tf7WvCd/lfwW7DuC7M34QCn4GbUI1i23wcHvUaR9nztqjCBug4hgwYsJee9EYDjk
GoqgYm9dIQw0g9d2FYJU1Pg=
-----END RSA PRIVATE KEY-----

Go实现


package xrsa
 
import (
    "encoding/pem"
    "encoding/base64"
    "crypto/x509"
    "crypto/rsa"
    "crypto/rand"
    "errors"
    "crypto"
    "io"
    "bytes"
    "encoding/asn1"
)
 
const (
    CHAR_SET = "UTF-8"
    BASE_64_FORMAT = "UrlSafeNoPadding"
    RSA_ALGORITHM_KEY_TYPE = "PKCS8"
    RSA_ALGORITHM_SIGN = crypto.SHA256
)
 
type XRsa struct {
    publicKey *rsa.PublicKey
    privateKey *rsa.PrivateKey
}
 
// 生成**对
func CreateKeys(publicKeyWriter, privateKeyWriter io.Writer, keyLength int) error {
    // 生成私钥文件
    privateKey, err := rsa.GenerateKey(rand.Reader, keyLength)
    if err != nil {
        return err
    }
    derStream := MarshalPKCS8PrivateKey(privateKey)
    block := &pem.Block{
        Type:  "PRIVATE KEY",
        Bytes: derStream,
    }
    err = pem.Encode(privateKeyWriter, block)
    if err != nil {
        return err
    }
 
    // 生成公钥文件
    publicKey := &privateKey.PublicKey
    derPkix, err := x509.MarshalPKIXPublicKey(publicKey)
    if err != nil {
        return err
    }
    block = &pem.Block{
        Type:  "PUBLIC KEY",
        Bytes: derPkix,
    }
    err = pem.Encode(publicKeyWriter, block)
    if err != nil {
        return err
    }
 
    return nil
}
 
func NewXRsa(publicKey []byte, privateKey []byte) (*XRsa, error) {
    block, _ := pem.Decode(publicKey)
    if block == nil {
        return nil, errors.New("public key error")
    }
    pubInterface, err := x509.ParsePKIXPublicKey(block.Bytes)
    if err != nil {
        return nil, err
    }
    pub := pubInterface.(*rsa.PublicKey)
 
    block, _ = pem.Decode(privateKey)
    if block == nil {
        return nil, errors.New("private key error!")
    }
    priv, err := x509.ParsePKCS8PrivateKey(block.Bytes)
    if err != nil {
        return nil, err
    }
 
    pri, ok := priv.(*rsa.PrivateKey)
    if ok {
        return &XRsa {
            publicKey: pub,
            privateKey: pri,
        }, nil
    } else {
        return nil, errors.New("private key not supported")
    }
}
 
// 公钥加密
func (r *XRsa) PublicEncrypt(data string) (string, error) {
    partLen := r.publicKey.N.BitLen() / 8 - 11
    chunks := split([]byte(data), partLen)
 
    buffer := bytes.NewBufferString("")
    for _, chunk := range chunks {
        bytes, err := rsa.EncryptPKCS1v15(rand.Reader, r.publicKey, chunk)
        if err != nil {
            return "", err
        }
        buffer.Write(bytes)
    }
 
    return base64.RawURLEncoding.EncodeToString(buffer.Bytes()), nil
}
 
// 私钥解密
func (r *XRsa) PrivateDecrypt(encrypted string) (string, error) {
    partLen := r.publicKey.N.BitLen() / 8
    raw, err := base64.RawURLEncoding.DecodeString(encrypted)
    chunks := split([]byte(raw), partLen)
 
    buffer := bytes.NewBufferString("")
    for _, chunk := range chunks {
        decrypted, err := rsa.DecryptPKCS1v15(rand.Reader, r.privateKey, chunk)
        if err != nil {
            return "", err
        }
        buffer.Write(decrypted)
    }
 
    return buffer.String(), err
}
 
// 数据加签
func (r *XRsa) Sign(data string) (string, error) {
    h := RSA_ALGORITHM_SIGN.New()
    h.Write([]byte(data))
    hashed := h.Sum(nil)
 
    sign, err := rsa.SignPKCS1v15(rand.Reader, r.privateKey, RSA_ALGORITHM_SIGN, hashed)
    if err != nil {
        return "", err
    }
    return base64.RawURLEncoding.EncodeToString(sign), err
}
 
// 数据验签
func (r *XRsa) Verify(data string, sign string) error {
    h := RSA_ALGORITHM_SIGN.New()
    h.Write([]byte(data))
    hashed := h.Sum(nil)
 
    decodedSign, err := base64.RawURLEncoding.DecodeString(sign)
    if err != nil {
        return err
    }
 
    return rsa.VerifyPKCS1v15(r.publicKey, RSA_ALGORITHM_SIGN, hashed, decodedSign)
}
 
func MarshalPKCS8PrivateKey(key *rsa.PrivateKey) []byte {
    info := struct {
        Version             int
        PrivateKeyAlgorithm []asn1.ObjectIdentifier
        PrivateKey          []byte
    }{}
    info.Version = 0
    info.PrivateKeyAlgorithm = make([]asn1.ObjectIdentifier, 1)
    info.PrivateKeyAlgorithm[0] = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 1}
    info.PrivateKey = x509.MarshalPKCS1PrivateKey(key)
 
    k, _ := asn1.Marshal(info)
    return k
}
 
func split(buf []byte, lim int) [][]byte {
    var chunk []byte
    chunks := make([][]byte, 0, len(buf)/lim+1)
    for len(buf) >= lim {
        chunk, buf = buf[:lim], buf[lim:]
        chunks = append(chunks, chunk)
    }
    if len(buf) > 0 {
        chunks = append(chunks, buf[:len(buf)])
    }
    return chunks
}

Php实现

<?php

namespace fast;

class XRsa
{
    const CHAR_SET = "UTF-8";
    const BASE_64_FORMAT = "UrlSafeNoPadding";
    const RSA_ALGORITHM_KEY_TYPE = OPENSSL_KEYTYPE_RSA;
    const RSA_ALGORITHM_SIGN = OPENSSL_ALGO_SHA256;

    protected $public_key;
    protected $private_key;
    protected $key_len;

    public function __construct($pub_key, $pri_key = null)
    {
        $this->public_key = $pub_key;
        $this->private_key = $pri_key;

        $pub_id = openssl_get_publickey($this->public_key);
        $this->key_len = openssl_pkey_get_details($pub_id)['bits'];
    }

    /*
    * 创建**对
    */
    public static function createKeys($key_size = 2048)
    {
        $config = array(
            "private_key_bits" => $key_size,
            "private_key_type" => self::RSA_ALGORITHM_KEY_TYPE,
        );
        $res = openssl_pkey_new($config);
        openssl_pkey_export($res, $private_key);
        $public_key_detail = openssl_pkey_get_details($res);
        $public_key = $public_key_detail["key"];

        return [
            "public_key" => $public_key,
            "private_key" => $private_key,
        ];
    }

    /*
    * 公钥加密
    */
    public function publicEncrypt($data)
    {
        $encrypted = '';
        $part_len = $this->key_len / 8 - 11;
        $parts = str_split($data, $part_len);

        foreach ($parts as $part) {
            $encrypted_temp = '';
            openssl_public_encrypt($part, $encrypted_temp, $this->public_key);
            $encrypted .= $encrypted_temp;
        }

        return $this->url_safe_base64_encode($encrypted);
    }

    /*
    * 私钥解密
    */
    public function privateDecrypt($encrypted)
    {
        $decrypted = "";
        $part_len = $this->key_len / 8;
        $base64_decoded = $this->url_safe_base64_decode($encrypted);
        $parts = str_split($base64_decoded, $part_len);

        foreach ($parts as $part) {
            $decrypted_temp = '';
            openssl_private_decrypt($part, $decrypted_temp, $this->private_key);
            $decrypted .= $decrypted_temp;
        }
        return $decrypted;
    }

    /*
    * 私钥加密
    */
    public function privateEncrypt($data)
    {
        $encrypted = '';
        $part_len = $this->key_len / 8 - 11;
        $parts = str_split($data, $part_len);

        foreach ($parts as $part) {
            $encrypted_temp = '';
            openssl_private_encrypt($part, $encrypted_temp, $this->private_key);
            $encrypted .= $encrypted_temp;
        }

        return $this->url_safe_base64_encode($encrypted);
    }

    /*
    * 公钥解密
    */
    public function publicDecrypt($encrypted)
    {
        $decrypted = "";
        $part_len = $this->key_len / 8;
        $base64_decoded = $this->url_safe_base64_decode($encrypted);
        $parts = str_split($base64_decoded, $part_len);

        foreach ($parts as $part) {
            $decrypted_temp = '';
            openssl_public_decrypt($part, $decrypted_temp, $this->public_key);
            $decrypted .= $decrypted_temp;
        }
        return $decrypted;
    }

    /*
    * 数据加签
    */
    public function sign($data)
    {
        openssl_sign($data, $sign, $this->private_key, self::RSA_ALGORITHM_SIGN);

        return $this->url_safe_base64_encode($sign);
    }

    /*
    * 数据签名验证
    */
    public function verify($data, $sign)
    {
        $pub_id = openssl_get_publickey($this->public_key);
        $res = openssl_verify($data, $this->url_safe_base64_decode($sign), $pub_id, self::RSA_ALGORITHM_SIGN);
        return $res;
    }

    function url_safe_base64_decode($data)
    {
        $base_64 = str_replace(array('-', '_'), array('+', '/'), $data);
        return base64_decode($base_64);
    }

    function url_safe_base64_encode($data)
    {
        return str_replace(array('+', '/', '='), array('-', '_', ''), base64_encode($data));
    }


}

?>

Java实现

package com.inspii;
 
import org.apache.commons.codec.binary.Base64;
import org.apache.commons.io.IOUtils;
 
import javax.crypto.Cipher;
import java.io.ByteArrayOutputStream;
import java.security.*;
import java.security.interfaces.RSAPublicKey;
import java.security.interfaces.RSAPrivateKey;
import java.security.spec.PKCS8EncodedKeySpec;
import java.security.spec.X509EncodedKeySpec;
import java.util.HashMap;
import java.util.Map;
 
public class XRsa {
    public static final String CHARSET = "UTF-8";
    public static final String RSA_ALGORITHM = "RSA";
    public static final String RSA_ALGORITHM_SIGN = "SHA256WithRSA";
 
    private RSAPublicKey publicKey;
    private RSAPrivateKey privateKey;
 
    public XRsa(String publicKey, String privateKey)
    {
        try {
            KeyFactory keyFactory = KeyFactory.getInstance(RSA_ALGORITHM);
 
            //通过X509编码的Key指令获得公钥对象
            X509EncodedKeySpec x509KeySpec = new X509EncodedKeySpec(Base64.decodeBase64(publicKey));
            this.publicKey = (RSAPublicKey) keyFactory.generatePublic(x509KeySpec);
            //通过PKCS#8编码的Key指令获得私钥对象
            PKCS8EncodedKeySpec pkcs8KeySpec = new PKCS8EncodedKeySpec(Base64.decodeBase64(privateKey));
            this.privateKey = (RSAPrivateKey) keyFactory.generatePrivate(pkcs8KeySpec);
        } catch (Exception e) {
            throw new RuntimeException("不支持的**", e);
        }
    }
 
    public static Map<String, String> createKeys(int keySize){
        //为RSA算法创建一个KeyPairGenerator对象
        KeyPairGenerator kpg;
        try{
            kpg = KeyPairGenerator.getInstance(RSA_ALGORITHM);
        }catch(NoSuchAlgorithmException e){
            throw new IllegalArgumentException("No such algorithm-->[" + RSA_ALGORITHM + "]");
        }
 
        //初始化KeyPairGenerator对象,不要被initialize()源码表面上欺骗,其实这里声明的size是生效的
        kpg.initialize(keySize);
        //生成密匙对
        KeyPair keyPair = kpg.generateKeyPair();
        //得到公钥
        Key publicKey = keyPair.getPublic();
        String publicKeyStr = Base64.encodeBase64URLSafeString(publicKey.getEncoded());
        //得到私钥
        Key privateKey = keyPair.getPrivate();
        String privateKeyStr = Base64.encodeBase64URLSafeString(privateKey.getEncoded());
        Map<String, String> keyPairMap = new HashMap<String, String>();
        keyPairMap.put("publicKey", publicKeyStr);
        keyPairMap.put("privateKey", privateKeyStr);
 
        return keyPairMap;
    }
 
    public String publicEncrypt(String data){
        try{
            Cipher cipher = Cipher.getInstance(RSA_ALGORITHM);
            cipher.init(Cipher.ENCRYPT_MODE, publicKey);
            return Base64.encodeBase64URLSafeString(rsaSplitCodec(cipher, Cipher.ENCRYPT_MODE, data.getBytes(CHARSET), publicKey.getModulus().bitLength()));
        }catch(Exception e){
            throw new RuntimeException("加密字符串[" + data + "]时遇到异常", e);
        }
    }
 
    public String privateDecrypt(String data){
        try{
            Cipher cipher = Cipher.getInstance(RSA_ALGORITHM);
            cipher.init(Cipher.DECRYPT_MODE, privateKey);
            return new String(rsaSplitCodec(cipher, Cipher.DECRYPT_MODE, Base64.decodeBase64(data), publicKey.getModulus().bitLength()), CHARSET);
        }catch(Exception e){
            throw new RuntimeException("解密字符串[" + data + "]时遇到异常", e);
        }
    }
 
    public String privateEncrypt(String data){
        try{
            Cipher cipher = Cipher.getInstance(RSA_ALGORITHM);
            cipher.init(Cipher.ENCRYPT_MODE, privateKey);
            return Base64.encodeBase64URLSafeString(rsaSplitCodec(cipher, Cipher.ENCRYPT_MODE, data.getBytes(CHARSET), publicKey.getModulus().bitLength()));
        }catch(Exception e){
            throw new RuntimeException("加密字符串[" + data + "]时遇到异常", e);
        }
    }
 
    public String publicDecrypt(String data){
        try{
            Cipher cipher = Cipher.getInstance(RSA_ALGORITHM);
            cipher.init(Cipher.DECRYPT_MODE, publicKey);
            return new String(rsaSplitCodec(cipher, Cipher.DECRYPT_MODE, Base64.decodeBase64(data), publicKey.getModulus().bitLength()), CHARSET);
        }catch(Exception e){
            throw new RuntimeException("解密字符串[" + data + "]时遇到异常", e);
        }
    }
 
    public String sign(String data){
        try{
            //sign
            Signature signature = Signature.getInstance(RSA_ALGORITHM_SIGN);
            signature.initSign(privateKey);
            signature.update(data.getBytes(CHARSET));
            return Base64.encodeBase64URLSafeString(signature.sign());
        }catch(Exception e){
            throw new RuntimeException("签名字符串[" + data + "]时遇到异常", e);
        }
    }
 
    public boolean verify(String data, String sign){
        try{
            Signature signature = Signature.getInstance(RSA_ALGORITHM_SIGN);
            signature.initVerify(publicKey);
            signature.update(data.getBytes(CHARSET));
            return signature.verify(Base64.decodeBase64(sign));
        }catch(Exception e){
            throw new RuntimeException("验签字符串[" + data + "]时遇到异常", e);
        }
    }
 
    private static byte[] rsaSplitCodec(Cipher cipher, int opmode, byte[] datas, int keySize){
        int maxBlock = 0;
        if(opmode == Cipher.DECRYPT_MODE){
            maxBlock = keySize / 8;
        }else{
            maxBlock = keySize / 8 - 11;
        }
        ByteArrayOutputStream out = new ByteArrayOutputStream();
        int offSet = 0;
        byte[] buff;
        int i = 0;
        try{
            while(datas.length > offSet){
                if(datas.length-offSet > maxBlock){
                    buff = cipher.doFinal(datas, offSet, maxBlock);
                }else{
                    buff = cipher.doFinal(datas, offSet, datas.length-offSet);
                }
                out.write(buff, 0, buff.length);
                i++;
                offSet = i * maxBlock;
            }
        }catch(Exception e){
            throw new RuntimeException("加解密阀值为["+maxBlock+"]的数据时发生异常", e);
        }
        byte[] resultDatas = out.toByteArray();
        IOUtils.closeQuietly(out);
        return resultDatas;
    }
}

到了这里,关于RSA加密解密(无数据大小限制,php、go、java互通实现)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Python RSA加密解密

    一、RSA加密算法 RSA加密算法是一种非对称加密算法,加密的秘钥是由公钥和私钥两部分组成秘钥对,公钥用来加密消息,私钥用来解密消息,公钥是公开的,给对方进行加密,私钥则是用户自己保留,用来对加密的数据进行解密。 公钥pem文件格式:以-----BEGIN PUBLIC KEY-----标记

    2024年02月10日
    浏览(36)
  • RSA加密/解密

    1.1、RSA算法介绍 RSA加密算法是一种可逆的非对称加密算法,即RSA加密时候用的密钥(公钥)和RSA解密时用的密钥(私钥)不是同一把。基本原理是将两个很大的质数相乘很容易得到乘积,但是该乘积分解质因数却很困难。RSA算法被广泛的用于加密解密和RSA签名/验证等领域。

    2024年02月06日
    浏览(37)
  • RSA 加密解密算法实现(简单,易懂)!!!

    目录 一、什么是RSA算法 1.对称加密 2.非对称加密 3.非对称加密的应用 二、RSA算法的基础操作步骤 1.生成公钥和私钥 2.用公钥加密信息  3.用私钥解密信息 三、AC代码 六、RSA算法的测试  七、共勉     在计算机中常用的加密算法分为两类: 对称加密算法和非对称加密算法。

    2024年01月20日
    浏览(57)
  • RSA加密,解密,加签及验签

    目录 1.说明 2.加密和加签的区别 3.后端加密,解密,加签及验签示例 4.前端加密,解密,加签及验签示例 5.前端加密,后端解密,前端加签,后端验签 6.注意事项 1.说明 RSA算法是一种非对称加密算法,与对称加密算法不同的是,RSA算法有两个不同的密钥,一个是公钥,一个是私钥

    2024年02月20日
    浏览(41)
  • 使用非对称加密(RSA) 实现前端加密后端解密

    数据加密方式有: 单向加密、对称加密、非对称加密、加密盐、散列函数、数字签名。 1、单向加密 单向加密通过对数据进行摘要计算生成密文,密文不可逆推还原。只能加密,不能解密,常用于提取数据的指纹信息以此来验证数据的完整性。但是会引发雪崩效应(雪崩效应

    2024年02月08日
    浏览(45)
  • RSA之前端加密后端解密

    RSA加密解密方式有: (1)公钥加密,私钥解密; (2)私钥加密,公钥解密; 此文章中以下我使用的是 前端公钥加密,后端私钥解密 ; http://web.chacuo.net/netrsakeypair 生成对应的公钥和私钥 前端加密js文件 : 链接: https://pan.baidu.com/s/1NIMayTcmjbMOf7BqPhPQoA 提取码: t7an 下载js文件并

    2024年02月21日
    浏览(41)
  • Java代码实现RSA算法加密解密文件功能

    底层算法不做赘述,想要了解自行百度。 RSA属于非对称加密,非对称加密有公钥和私钥两个概念,私钥自己拥有,不能给别人,公钥公开。根据应用的不同,我们可以选择使用不同的密钥加密: 签名:使用私钥加密,公钥解密。用于让所有公钥所有者验证私钥所有者的身份

    2024年02月12日
    浏览(38)
  • js实现rsa密钥的加密、解密与生成

    今天想用js实现rsa的加解密的,在网上找了好久,下载啊什么的,十分麻烦,今天我也不bb的直接放代码 rsa.html 生成完了后,可以去在线rsa网站上检测一下,RSA在线加解密 下载链接: rsa.zip - 蓝奏云 备用下载链接: 百度网盘 密码1234 参考文献: travist/jsencrypt: (github.com)

    2024年02月16日
    浏览(30)
  • RSA加密、解密、签名、验签的原理及方法

    一、RSA加密简介 RSA加密是一种非对称加密。可以在不直接传递密钥的情况下,完成解密。这能够确保信息的安全性,避免了直接传递密钥所造成的被破解的风险。是由一对密钥来进行加解密的过程,分别称为公钥和私钥。两者之间有数学相关,该加密算法的原理就是对一极大

    2024年02月05日
    浏览(42)
  • Springboot接口返回参数以及入参RSA加密解密

    网上有好多通过aop切面以及自定义的RSA工具类进行加密解密的方法,期中的过程繁琐也不好用,博主研究了一天从网上到了超好用的基于Springboot框架实现的接口RSA加密解密方式,通过 rsa-encrypt-body-spring-boot 实现了对Spring Boot接口返回值、参数值通过注解的方式自动加解密。

    2024年02月13日
    浏览(34)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包