Python实现PSO粒子群优化算法优化LightGBM分类模型(LGBMClassifier算法)项目实战

这篇具有很好参考价值的文章主要介绍了Python实现PSO粒子群优化算法优化LightGBM分类模型(LGBMClassifier算法)项目实战。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。


Python实现PSO粒子群优化算法优化LightGBM分类模型(LGBMClassifier算法)项目实战,机器学习,python,python,机器学习,群智能优化算法,PSO粒子群优化算法,LightGBM分类模型


Python实现PSO粒子群优化算法优化LightGBM分类模型(LGBMClassifier算法)项目实战,机器学习,python,python,机器学习,群智能优化算法,PSO粒子群优化算法,LightGBM分类模型


1.项目背景

PSO是粒子群优化算法(Particle Swarm Optimization)的英文缩写,是一种基于种群的随机优化技术,由Eberhart和Kennedy于1995年提出。粒子群算法模仿昆虫、兽群、鸟群和鱼群等的群集行为,这些群体按照一种合作的方式寻找食物,群体中的每个成员通过学习它自身的经验和其他成员的经验来不断改变其搜索模式。

本项目通过PSO粒子群优化LightGBM分类算法来构建分类模型。

2.数据获取

本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下:

Python实现PSO粒子群优化算法优化LightGBM分类模型(LGBMClassifier算法)项目实战,机器学习,python,python,机器学习,群智能优化算法,PSO粒子群优化算法,LightGBM分类模型

数据详情如下(部分展示):

Python实现PSO粒子群优化算法优化LightGBM分类模型(LGBMClassifier算法)项目实战,机器学习,python,python,机器学习,群智能优化算法,PSO粒子群优化算法,LightGBM分类模型

3.数据预处理

3.1 用Pandas工具查看数据

使用Pandas工具的head()方法查看前五行数据:

Python实现PSO粒子群优化算法优化LightGBM分类模型(LGBMClassifier算法)项目实战,机器学习,python,python,机器学习,群智能优化算法,PSO粒子群优化算法,LightGBM分类模型

关键代码:

Python实现PSO粒子群优化算法优化LightGBM分类模型(LGBMClassifier算法)项目实战,机器学习,python,python,机器学习,群智能优化算法,PSO粒子群优化算法,LightGBM分类模型

3.2数据缺失查看

使用Pandas工具的info()方法查看数据信息:

Python实现PSO粒子群优化算法优化LightGBM分类模型(LGBMClassifier算法)项目实战,机器学习,python,python,机器学习,群智能优化算法,PSO粒子群优化算法,LightGBM分类模型

从上图可以看到,总共有9个变量,数据中无缺失值,共1000条数据。

关键代码:

Python实现PSO粒子群优化算法优化LightGBM分类模型(LGBMClassifier算法)项目实战,机器学习,python,python,机器学习,群智能优化算法,PSO粒子群优化算法,LightGBM分类模型

3.3数据描述性统计

通过Pandas工具的describe()方法来查看数据的平均值、标准差、最小值、分位数、最大值。

Python实现PSO粒子群优化算法优化LightGBM分类模型(LGBMClassifier算法)项目实战,机器学习,python,python,机器学习,群智能优化算法,PSO粒子群优化算法,LightGBM分类模型

关键代码如下:

Python实现PSO粒子群优化算法优化LightGBM分类模型(LGBMClassifier算法)项目实战,机器学习,python,python,机器学习,群智能优化算法,PSO粒子群优化算法,LightGBM分类模型

4.探索性数据分析

4.1 y变量柱状图

用Matplotlib工具的plot()方法绘制柱状图:

Python实现PSO粒子群优化算法优化LightGBM分类模型(LGBMClassifier算法)项目实战,机器学习,python,python,机器学习,群智能优化算法,PSO粒子群优化算法,LightGBM分类模型

4.2 y=1样本x1变量分布直方图

用Matplotlib工具的hist()方法绘制直方图:

Python实现PSO粒子群优化算法优化LightGBM分类模型(LGBMClassifier算法)项目实战,机器学习,python,python,机器学习,群智能优化算法,PSO粒子群优化算法,LightGBM分类模型

4.3 相关性分析

 Python实现PSO粒子群优化算法优化LightGBM分类模型(LGBMClassifier算法)项目实战,机器学习,python,python,机器学习,群智能优化算法,PSO粒子群优化算法,LightGBM分类模型

从上图中可以看到,数值越大相关性越强,正值是正相关、负值是负相关。

5.特征工程

5.1 建立特征数据和标签数据

关键代码如下:

Python实现PSO粒子群优化算法优化LightGBM分类模型(LGBMClassifier算法)项目实战,机器学习,python,python,机器学习,群智能优化算法,PSO粒子群优化算法,LightGBM分类模型

5.2 数据集拆分

通过train_test_split()方法按照80%训练集、20%测试集进行划分,关键代码如下:

Python实现PSO粒子群优化算法优化LightGBM分类模型(LGBMClassifier算法)项目实战,机器学习,python,python,机器学习,群智能优化算法,PSO粒子群优化算法,LightGBM分类模型

6.构建PSO粒子群优化LightGBM分类模型

主要使用PSO粒子群算法优化LightGBM分类算法,用于目标分类。

6.1 PSO粒子群算法寻找最优参数值

最优参数:

Python实现PSO粒子群优化算法优化LightGBM分类模型(LGBMClassifier算法)项目实战,机器学习,python,python,机器学习,群智能优化算法,PSO粒子群优化算法,LightGBM分类模型

6.2 最优参数值构建模型

Python实现PSO粒子群优化算法优化LightGBM分类模型(LGBMClassifier算法)项目实战,机器学习,python,python,机器学习,群智能优化算法,PSO粒子群优化算法,LightGBM分类模型

7.模型评估

7.1评估指标及结果

评估指标主要包括准确率、查准率、查全率、F1分值等等。

Python实现PSO粒子群优化算法优化LightGBM分类模型(LGBMClassifier算法)项目实战,机器学习,python,python,机器学习,群智能优化算法,PSO粒子群优化算法,LightGBM分类模型

从上表可以看出,F1分值为0.9223,说明模型效果良好。

关键代码如下:

Python实现PSO粒子群优化算法优化LightGBM分类模型(LGBMClassifier算法)项目实战,机器学习,python,python,机器学习,群智能优化算法,PSO粒子群优化算法,LightGBM分类模型

7.2 分类报告

Python实现PSO粒子群优化算法优化LightGBM分类模型(LGBMClassifier算法)项目实战,机器学习,python,python,机器学习,群智能优化算法,PSO粒子群优化算法,LightGBM分类模型

从上图可以看出,分类为0的F1分值为0.93;分类为1的F1分值为0.92。  

7.3 混淆矩阵

Python实现PSO粒子群优化算法优化LightGBM分类模型(LGBMClassifier算法)项目实战,机器学习,python,python,机器学习,群智能优化算法,PSO粒子群优化算法,LightGBM分类模型

从上图可以看出,实际为0预测不为0的 有12个样本;实际为1预测不为1的 有3个样本,整体预测准确率良好。  

8.结论与展望

综上所述,本项目采用了PSO粒子群算法寻找LightGBM分类算法的最优参数值来构建分类模型,最终证明了我们提出的模型效果良好。此模型可用于日常产品的预测。

# 本次机器学习项目实战所需的资料,项目资源如下:
 
# 项目说明:

# 链接:https://pan.baidu.com/s/1ik5bTZRYGVAv2XrJkyectg 
# 提取码:tq6o

 更多项目实战,详见机器学习项目实战合集列表:

机器学习项目实战合集列表_机器学习实战项目_胖哥真不错的博客-CSDN博客文章来源地址https://www.toymoban.com/news/detail-555761.html


到了这里,关于Python实现PSO粒子群优化算法优化LightGBM分类模型(LGBMClassifier算法)项目实战的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包