深度学习——CNN卷积神经网络

这篇具有很好参考价值的文章主要介绍了深度学习——CNN卷积神经网络。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

基本概念

概述

卷积神经网络(Convolutional Neural Network,CNN)是一种深度学习中常用于处理具有网格结构数据的神经网络模型。它在计算机视觉领域广泛应用于图像分类、目标检测、图像生成等任务。

核心思想

CNN 的核心思想是通过利用局部感知和参数共享来捕捉输入数据的空间结构信息。相比于传统的全连接神经网络,CNN 在网络结构中引入了卷积层和池化层,从而减少了参数量,并且能够更好地处理高维输入数据。

其他概念

输入层:接收原始图像或其他形式的输入数据。
卷积层(Convolutional Layer):使用卷积操作提取输入特征,通过设置滤波器(卷积核)在输入数据上滑动并执行卷积运算。这样可以学习到局部的特征,如边缘、纹理等。
激活函数(Activation Function):在每个卷积层后面通常紧跟一个非线性的激活函数,如ReLU(Rectified Linear Unit),以增加网络的非线性表达能力。
池化层(Pooling Layer):通过减少特征图的尺寸来降低模型复杂性。常用的池化操作是最大池化(Max Pooling),它选取每个池化窗口内的最大特征值作为输出。
全连接层(Fully Connected Layer):将卷积层和池化层的输出连接到全连接层,使用传统的神经网络模式进行分类、回归等任务。
Dropout 层:在训练过程中以一定概率随机将部分神经元的输出置为0,以减少模型的过拟合。
Softmax 层:多分类问题中常用的输出层,在最后一层进行 softmax 操作将输出转化为类别上的概率分布。

代码与详细注释

import os

# third-party library
import torch
import torch.nn as nn
import torch.utils.data as Data
import torchvision
import matplotlib.pyplot as plt

# torch.manual_seed(1)    # reproducible

# Hyper Parameters
#  轮次
EPOCH = 1               # train the training data n times, to save time, we just train 1 epoch
# 批大小为50
BATCH_SIZE = 50
# 学习率
LR = 0.001
# 是否下载mnist数据集
DOWNLOAD_MNIST = False


# 下载minist数据集
if not(os.path.exists('./mnist/')) or not os.listdir('./mnist/'):
    # not mnist dir or mnist is empyt dir
    DOWNLOAD_MNIST = True

# torchvision本身就是一个数据库
train_data = torchvision.datasets.MNIST(
    root='./mnist/',
    train=True,                                     # this is training data
    transform=torchvision.transforms.ToTensor(),    # Converts a PIL.Image or numpy.ndarray to
                                                    # torch.FloatTensor of shape (C x H x W) and normalize in the range [0.0, 1.0]
    download=DOWNLOAD_MNIST,
)

# 输出训练数据尺寸
print(train_data.train_data.size())                 # (60000, 28, 28)
# 输出标签数据尺寸
print(train_data.train_labels.size())               # (60000)
# 展示训练数据集中的第0个图片
plt.imshow(train_data.train_data[0].numpy(), cmap='gray')
# 图片的标题是标签
plt.title('%i' % train_data.train_labels[0])
plt.show()

# Data Loader for easy mini-batch return in training, the image batch shape will be (50, 1, 28, 28)
# 批大小为50,shuffle为True意思是设置为随机
train_loader = Data.DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True)

# pick 2000 samples to speed up testing
test_data = torchvision.datasets.MNIST(root='./mnist/', train=False)
# 使用unsqueeze增加一个维度
test_x = torch.unsqueeze(test_data.test_data, dim=1).type(torch.FloatTensor)[:2000]/255.   # shape from (2000, 28, 28) to (2000, 1, 28, 28), value in range(0,1)
test_y = test_data.test_labels[:2000]


class CNN(nn.Module):
    def __init__(self):
        super(CNN, self).__init__()
        # 快速搭建神经网络
        self.conv1 = nn.Sequential(         # input shape (1, 28, 28)
            nn.Conv2d(
                in_channels=1,              # input height
                out_channels=16,            # n_filters
                kernel_size=5,              # filter size
                stride=1,                   # filter movement/step
                padding=2,                  # if want same width and length of this image after Conv2d, padding=(kernel_size-1)/2 if stride=1
            ),                              # output shape (16, 28, 28)
            nn.ReLU(),                      # activation
            nn.MaxPool2d(kernel_size=2),    # choose max value in 2x2 area, output shape (16, 14, 14)
        )
        self.conv2 = nn.Sequential(         # input shape (16, 14, 14)
            nn.Conv2d(16, 32, 5, 1, 2),     # output shape (32, 14, 14)
            nn.ReLU(),                      # activation
            nn.MaxPool2d(2),                # output shape (32, 7, 7)
        )
        self.out = nn.Linear(32 * 7 * 7, 10)   # fully connected layer, output 10 classes

    # 前向传播
    def forward(self, x):
        # 第一层卷积
        x = self.conv1(x)
        # 第二层卷积
        x = self.conv2(x)
        x = x.view(x.size(0), -1)           # flatten the output of conv2 to (batch_size, 32 * 7 * 7)
        output = self.out(x)
        return output, x    # return x for visualization


cnn = CNN()
print(cnn)  # net architecture

# 选择优化器
optimizer = torch.optim.Adam(cnn.parameters(), lr=LR)   # optimize all cnn parameters
# 选择损失函数
loss_func = nn.CrossEntropyLoss()                       # the target label is not one-hotted

# following function (plot_with_labels) is for visualization, can be ignored if not interested
from matplotlib import cm
try: from sklearn.manifold import TSNE; HAS_SK = True
except: HAS_SK = False; print('Please install sklearn for layer visualization')
def plot_with_labels(lowDWeights, labels):
    plt.cla()
    X, Y = lowDWeights[:, 0], lowDWeights[:, 1]
    for x, y, s in zip(X, Y, labels):
        c = cm.rainbow(int(255 * s / 9)); plt.text(x, y, s, backgroundcolor=c, fontsize=9)
    plt.xlim(X.min(), X.max()); plt.ylim(Y.min(), Y.max()); plt.title('Visualize last layer'); plt.show(); plt.pause(0.01)

plt.ion()


# training and testing
for epoch in range(EPOCH):
    for step, (b_x, b_y) in enumerate(train_loader):   # gives batch data, normalize x when iterate train_loader

        output = cnn(b_x)[0]            # cnn output
        loss = loss_func(output, b_y)   # cross entropy loss
        optimizer.zero_grad()           # clear gradients for this training step
        loss.backward()                 # backpropagation, compute gradients
        optimizer.step()                # apply gradients

        if step % 50 == 0:
            test_output, last_layer = cnn(test_x)
            pred_y = torch.max(test_output, 1)[1].data.numpy()
            accuracy = float((pred_y == test_y.data.numpy()).astype(int).sum()) / float(test_y.size(0))
            print('Epoch: ', epoch, '| train loss: %.4f' % loss.data.numpy(), '| test accuracy: %.2f' % accuracy)
            if HAS_SK:
                # Visualization of trained flatten layer (T-SNE)
                tsne = TSNE(perplexity=30, n_components=2, init='pca', n_iter=5000)
                plot_only = 500
                low_dim_embs = tsne.fit_transform(last_layer.data.numpy()[:plot_only, :])
                labels = test_y.numpy()[:plot_only]
                plot_with_labels(low_dim_embs, labels)
plt.ioff()

# print 10 predictions from test data
test_output, _ = cnn(test_x[:10])
pred_y = torch.max(test_output, 1)[1].data.numpy()
print(pred_y, 'prediction number')
print(test_y[:10].numpy(), 'real number')



运行结果

深度学习——CNN卷积神经网络,深度学习,PyTorch,深度学习,cnn,人工智能

深度学习——CNN卷积神经网络,深度学习,PyTorch,深度学习,cnn,人工智能文章来源地址https://www.toymoban.com/news/detail-555933.html

到了这里,关于深度学习——CNN卷积神经网络的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 深度学习入门(三):卷积神经网络(CNN)

    给定一张图片,计算机需要模型判断图里的东西是什么? (car、truck、airplane、ship、horse) CONV:卷积计算层,线性乘积求和 RELU:激励层,激活函数 POOL:池化层,取区域平均或最大(MAX POOL) PC:全连接层 对CNN来说,它是一块一块进行对比的,“小块”称之为Features特征。

    2024年02月11日
    浏览(42)
  • 【深度学习】最强算法之:卷积神经网络(CNN)

    小屌丝 :鱼哥, 看下这个流程图,我没看明白 小鱼 :啥流程图。 小屌丝 :你看,就是这个。 小鱼 :嗯,不错,不错。 小屌丝 :能不能给我讲一讲这个? 小鱼 :你要了解CNN ? 小屌丝 :CNN 是? 小鱼 :…你这… 深度学习知道吗? 小屌丝 :知道啊 小鱼 :你都知道深度

    2024年04月09日
    浏览(40)
  • 【深度学习_TensorFlow】卷积神经网络(CNN)

    这篇文章的行文思路如下: 先根据视频了解卷积和卷积神经网络的整体框架 接着了解卷积神经网络构建过程中的一些重要操作,包括内积、填充、池化。 然后介绍卷积层如何实现。 最后用卷积神经网络的开山之作(LeNet-5)来进行上手练习。 最近学习信号与系统的时候,了

    2024年02月07日
    浏览(49)
  • 学习笔记:深度学习(3)——卷积神经网络(CNN)理论篇

    学习时间:2022.04.10~2022.04.12 CNN(Convolutional Neural Networks, ConvNets, 卷积神经网络)是神经网络的一种,是理解图像内容的最佳学习算法之一,并且在图像分割、分类、检测和检索相关任务中表现出色。 3.1.1 什么是CNN? CNN是一种带有卷积结构的前馈神经网络, 卷积结构 可以减少

    2024年02月03日
    浏览(91)
  • 深度学习入门——卷积神经网络CNN基本原理+实战

    ​ 卷积神经网络(Convolutional Neural Network,CNN)是深度学习技术中最基础的网络结构,模拟人脑工作,具备强大的特征学习能力。CNN结构主要由两部分组成:特征提取部分和分类部分color{blue}{特征提取部分和分类部分}特征提取部分和分类部分。特征提取部分网络将执行一系列

    2024年01月21日
    浏览(49)
  • 【深度学习】6-4 卷积神经网络 - CNN的实现

    CNN的实现 网络的构成是“Convolution - ReLU - Pooling -Affine - ReLU - Affine - Softmax”,我们将它实现为名为 SimpleConvNet 的类。 首先来看一下 SimpleConvNet的初始化( init ),取下面这些参数。 input_dim——输入数据的维度:(通道,高,长) conv_param——卷积层的超参数(字典)。字典的

    2024年02月10日
    浏览(46)
  • 文本分类系统Python,基于深度学习CNN卷积神经网络

    文本分类系统,使用Python作为主要开发语言,通过TensorFlow搭建CNN卷积神经网络对十余种不同种类的文本数据集进行训练,最后得到一个h5格式的本地模型文件,然后采用Django开发网页界面,实现用户在界面中输入一段文字,识别其所属的文本种类。 在我们的日常生活和工作中

    2024年02月08日
    浏览(55)
  • 深度学习实战——卷积神经网络/CNN实践(LeNet、Resnet)

          忆如完整项目/代码详见github: https://github.com/yiru1225 (转载标明出处 勿白嫖 star for projects thanks) 本系列博客重点在深度学习相关实践(有问题欢迎在评论区讨论指出,或直接私信联系我)。 第一章  深度学习实战——不同方式的模型部署(CNN、Yolo)_如何部署cnn_

    2023年04月11日
    浏览(47)
  • 车牌识别系统Python,基于深度学习CNN卷积神经网络算法

    车牌识别系统,基于Python实现,通过TensorFlow搭建CNN卷积神经网络模型,对车牌数据集图片进行训练最后得到模型,并基于Django框架搭建网页端平台,实现用户在网页端输入一张图片识别其结果,并基于Pyqt5搭建桌面端可视化界面。 在智能交通和车辆监控领域,车牌识别技术扮

    2024年02月07日
    浏览(73)
  • 深度学习:使用卷积神经网络CNN实现MNIST手写数字识别

    本项目基于pytorch构建了一个深度学习神经网络,网络包含卷积层、池化层、全连接层,通过此网络实现对MINST数据集手写数字的识别,通过本项目代码,从原理上理解手写数字识别的全过程,包括反向传播,梯度下降等。 卷积神经网络是一种多层、前馈型神经网络。从功能上

    2024年02月13日
    浏览(45)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包