力扣 -- 62.不同路径、63.不同路径2

这篇具有很好参考价值的文章主要介绍了力扣 -- 62.不同路径、63.不同路径2。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

力扣 -- 62.不同路径、63.不同路径2,力扣经典面试题,力扣动态规划,leetcode,算法,c++,数据结构,动态规划

 力扣 -- 62.不同路径、63.不同路径2,力扣经典面试题,力扣动态规划,leetcode,算法,c++,数据结构,动态规划

题目链接:64. 最小路径和 - 力扣(LeetCode) 63. 不同路径 II - 力扣(LeetCode)

以下是用动态规划的思想来解决这两道类似的动规的题目,相信各位老铁都是能够学会并且掌握这两道经典的题目的。

力扣 -- 62.不同路径、63.不同路径2,力扣经典面试题,力扣动态规划,leetcode,算法,c++,数据结构,动态规划

参考代码:

第一题:

class Solution {
public:
    int uniquePaths(int m, int n) {
        vector<vector<int>> dp(m,vector<int>(n,1));
        for(int i=1;i<m;i++)
        {
            for(int j=1;j<n;j++)
            {
                dp[i][j]=dp[i-1][j]+dp[i][j-1];
            }
        }
        return dp[m-1][n-1];
    }
};

第二题、

class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
        int m=obstacleGrid.size();
        int n=obstacleGrid[0].size();
        //多开一行和一列
        vector<vector<int>> dp(m+1,vector<int>(n+1));
        //初始化特殊位置
        dp[0][1]=1;
        for(int i=1;i<=m;i++)
        {
            for(int j=1;j<=n;j++)
            {
                //如果等于1,那么dp[i][j]就等于0,而dp表的值本身就是0,所以省略掉了
                if(obstacleGrid[i-1][j-1]==0)
                {
                    dp[i][j]=dp[i-1][j]+dp[i][j-1];
                }
            }
        }
        return dp[m][n];
    }
};

以上就是分析这两道dp题目的整个过程啦,你学会了吗?如果以上题解对你有所帮助,那么就点亮一下小心心,点点关注呗,后期还会持续更新动态规划的经典题目哦,我们下期见!!!!!  文章来源地址https://www.toymoban.com/news/detail-557046.html

到了这里,关于力扣 -- 62.不同路径、63.不同路径2的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 代码随想录Day33 LeetCode T62不同路径 LeetCode T63 不同路径II

    动规五部曲 1.确定dp数组含义 2.确定递推公式 3.初始化数组 4.确定遍历方式 5.打印dp数组查看分析问题 题目链接:62. 不同路径 - 力扣(LeetCode) 注:n行m列而不是m行n列 1.确定dp数组含义 代表到达此下标有多少条路径 2.确定递推公式 因为只能向右或者向下走,所以到达i,j这个点的

    2024年02月06日
    浏览(51)
  • 我在代码随想录|写代码Day33 | 动态规划| 路径问题| 62.不同路径,63. 不同路径 II,343. 整数拆分

    🔥博客介绍`: 27dCnc 🎥系列专栏: 数据结构与算法 算法入门 C++项目 🎥 当前专栏: 算法入门 专题 : 数据结构帮助小白快速入门算法 👍👍👍👍👍👍👍👍👍👍👍👍 ☆*: .。. o(≧▽≦)o .。.:*☆ ❤️感谢大家点赞👍收藏⭐评论✍️ 今日学习打卡 代码随想录 - 动态规划

    2024年03月11日
    浏览(63)
  • 【力扣】62. 不同路径 <动态规划>

    一个机器人位于一个 m m m x n n n 网格的左上角 (起始点在下图中标记为 “Start” )。 机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。问总共有多少条不同的路径? 示例 1: 输入:m = 3, n = 7 输出:28 示例 2: 输入:m

    2024年02月10日
    浏览(41)
  • 力扣62.不同路径(动态规划)

    2024年02月13日
    浏览(40)
  • 力扣:63. 不同路径 II(动态规划)

    一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。 机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish”)。 现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径? 网格中的障碍

    2024年01月18日
    浏览(53)
  • 动态规划 Leetcode 62 不同路径

    Leetcode 62 学习记录自代码随想录 要点:1.二维表格,想到(i,j)去代表其坐标,dp数组也因此为二维数组; 2.递推公式 d p [ i ] [ j ] dp[i][j] d p [ i ] [ j ] 的上一步只能是其左边或上边,所以 d p [ i ] [ j ] = d p [ i − 1 ] [ j ] + d p [ i ] [ j − 1 ] dp[i][j]=dp[i-1][j]+dp[i][j-1] d p [ i ] [ j ] =

    2024年03月13日
    浏览(43)
  • 力扣:62. 不同路径(动态规划,附python二维数组的定义)

    一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。 机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。 问总共有多少条不同的路径? 示例 1: 输入:m = 3, n = 7 输出:28 示例 2: 输入:m = 3, n

    2024年02月03日
    浏览(43)
  • 算法刷刷刷|动态规划篇|509.斐波那契数| 70.爬楼梯| 746.使用最小花费爬楼梯| 62.不同路径| 63不同路径2| 343.正数拆分 | 96.不同的二叉搜索树

    509. 斐波那契数 斐波那契数 (通常用 F(n) 表示)形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是: F(0) = 0,F(1) = 1 F(n) = F(n - 1) + F(n - 2),其中 n 1 给定 n ,请计算 F(n) 。 70.爬楼梯 746.使用最小花费爬楼梯 给你一个整数

    2023年04月23日
    浏览(57)
  • leetcode63. 不同路径 II(动态规划-java)

    来源:力扣(LeetCode) 链接:https://leetcode.cn/problems/unique-paths-ii 一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。 机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish”)。 现在考虑网格中有障碍物。

    2024年02月11日
    浏览(50)
  • 【算法|动态规划No.6】leetcode63. 不同路径Ⅱ

    个人主页:平行线也会相交 欢迎 点赞👍 收藏✨ 留言✉ 加关注💓本文由 平行线也会相交 原创 收录于专栏【手撕算法系列专栏】【LeetCode】 🍔本专栏旨在提高自己算法能力的同时,记录一下自己的学习过程,希望对大家有所帮助 🍓希望我们一起努力、成长,共同进步。

    2024年02月16日
    浏览(49)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包