火山引擎 DataLeap 构建Data Catalog系统的实践(二):技术与产品概览

这篇具有很好参考价值的文章主要介绍了火山引擎 DataLeap 构建Data Catalog系统的实践(二):技术与产品概览。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

技术与产品概览

架构设计

火山引擎 DataLeap 构建Data Catalog系统的实践(二):技术与产品概览,火山引擎

 文章来源地址https://www.toymoban.com/news/detail-558695.html

元数据的接入

  • 元数据接入支持T+1和近实时两种方式
  • 上游系统:包括各类存储系统(比如Hive、 Clickhouse等)和业务系统(比如数据开发平台、数据质量平台等)
  • 中间层:
    • ETL Bridge:T+1方式运行,通常是从外部系统拉取最新元数据,与当前Catalog系统的元数据做对比,并更新差异的部分
    • MQ:用于暂存各类元数据增量消息,供Catalog系统近实时消费
    • 与上游系统打交道的各类Clients,封装了操作底层资源的能力

核心服务层

系统的核心服务,根据职责的不同,细拆为以下子服务:
  • Catalog Service:支持元数据的搜索、详情、修改等核心服务
  • Ingestion Service:接受外部系统调用,写入元数据,或主动从MQ中消费增量元数据
  • Resource Control Plane:通过各类Clients,与底层的存储或业务系统交互,操作底层资源,比如建库建表,能力可插拔
  • Q&A Service:问答系统相关能力,支持对元数据的字段含义、使用场景等提问和回答,能力可插拔
  • ML Service:负责封装与机器学习相关的能力,能力可插拔
  • API Layer:以RESTful API的形式整合系统中的各类能力

存储层

针对不同场景,选用的不同的存储:
  • Meta Store:存放全量元数据和血缘关系,当前使用的是HBase
  • Index Store:存放用于加速查询,支持全文索引等场景的索引,当前使用的是ElasticSearch
  • Model Store:存放推荐、打标等的算法模型信息,使用HDFS,当ML Service启用时使用

元数据的消费

  • 数据的生产者和消费者,通过Data Catalog的前端与系统交互
  • 下游在线服务可通过OpenAPI访问元数据,与系统交互
  • Metadata Outputs Layer:提供除了API之外的另外一种下游消费方式
    • MQ:用于暂存各类元数据变更消息,格式由Catalog系统官方定义
    • Data warehouse:以数仓表的形式呈现的全量元数据

产品功能升级

火山引擎 DataLeap 构建Data Catalog系统的实践(二):技术与产品概览,火山引擎

 

产品能力上的升级迭代,大致分为以下几个阶段:
  • 基础能力建设(2017-2019):数据源主要是离线数仓Hive,支持了Hive相关库表创建、元数据搜索与详情展示、表之间血缘,以及将相关表组织成业务视角的数据专题等
  • 中阶能力建设(2019-2020年中):数据源扩展了Clickhouse与Kafka,支持了Hive列血缘,Q&A问答系统等
  • 架构升级(2020年中-2021年初):产品能力迭代放缓,基于新设计升级架构
  • 能力提升与快速迭代(2021年至今):数据源扩展为包含离线、近实时、业务等端到端系统,搜索和血缘能力有明显增强,探索机器学习能力,产品形态更成熟稳定。另外我们还具备了ToB售卖的能力。
点击跳转 
大数据研发治理套件-火山引擎
 了解更多

到了这里,关于火山引擎 DataLeap 构建Data Catalog系统的实践(二):技术与产品概览的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 数据剖析更灵活、更快捷,火山引擎 DataLeap 动态探查全面升级

    更多技术交流、求职机会,欢迎关注 字节跳动数据平台微信公众号,回复【1】进入官方交流群 近期,火山引擎 DataLeap 上线“动态探查”能力,为用户提供全局数据视角、完善的抽样策略,提高数据探查的灵活度以及响应速率。 传统的数据探查是基于库表的全量探查,由后

    2024年02月03日
    浏览(45)
  • 火山引擎 DataLeap:揭秘字节跳动业务背后的分布式数据治理思路

    动手点关注 干货不迷路 导读:经过十多年的发展, 数据治理 在传统行业以及新兴互联网公司都已经产生落地实践。字节跳动也在探索一种分布式的数据治理方式。本篇内容来源于 火山引擎 超话数据直播活动的回顾,将从以下四个部分展开分享: 字节的挑战与实践 数据治

    2023年04月10日
    浏览(47)
  • 开发调试更便捷!火山引擎 DataLeap 提供 Notebook 交互式开发体验

    更多技术交流、求职机会,欢迎关注 字节跳动数据平台微信公众号,回复【1】进入官方交流群 Notebook 是一种支持 REPL 模式的开发环境。 所谓「REPL」,即「读取-求值-输出」循环:输入一段代码,立刻得到相应的结果,并继续等待下一次输入。Notebook 通常使得探索性的开发和

    2024年02月12日
    浏览(31)
  • 火山引擎DataLeap如何解决SLA治理难题(二):申报签署流程与复盘详解

    火山引擎DataLeap SLA保障的前提是先达成SLA协议。在SLA保障平台中,以 申报单签署 的形式达成SLA协议。平台核心特点是 优化了SLA达成的流程 ,先通过 “系统卡点计算”减少待签署任务的数量 ,再通过 “SLA推荐计算”自动签署部分任务,最后为剩下的待签署任务智能提供合适

    2024年02月15日
    浏览(48)
  • 火山引擎 Iceberg 数据湖的应用与实践

    在云原生计算时代,云存储使得海量数据能以低成本进行存储,但是这也给如何访问、管理和使用这些云上的数据提出了挑战。而 Iceberg 作为一种云原生的表格式,可以很好地应对这些挑战。本文将介绍火山引擎在云原生计算产品上使用 Iceberg 的实践,和大家分享高效查询、

    2024年02月09日
    浏览(34)
  • 湖仓一体架构在火山引擎 LAS 的探索与实践

    动手点关注 干货不迷路 火山引擎湖仓一体分析服务 LAS(Lakehouse Analytics Service),是面向湖仓一体架构的 Serverless 数据处理分析服务,提供字节跳动最佳实践的一站式 EB 级海量数据存储计算和交互分析能力,兼容 Spark、Presto 生态,帮助企业轻松构建智能实时湖仓。 LAS 服务是

    2024年02月06日
    浏览(42)
  • 火山引擎DataTester:A/B实验平台数据集成技术分享

    DataTester的数据集成系统,可大幅降低企业接入A/B实验平台门槛。   当企业想要接入一套A/B实验平台的时候,常常会遇到这样的问题: 企业已经有一套埋点系统了,增加A/B实验平台的话需要重复做一遍埋点,费时费力; 企业有多个客户端和数据中台并行的情况,这些不同来源

    2024年02月04日
    浏览(37)
  • 如何基于知识图谱技术构建现代搜索引擎系统、智能问答系统、智能推荐系统?

    1.构建搜索引擎系统 下图中描述的体系结构包括三个部分:结合本体库的网络爬虫,索引及检索模块以及知识图谱模块。其中爬虫及索引模块主要负责从网络中爬取原始数据并通过解析得到实体相关信息以及建立索引;搜索模块结合本体库Query解析检索语句得到搜索,

    2024年02月12日
    浏览(57)
  • 构建高效外卖系统:技术实践与代码示例

    外卖系统在现代社会中扮演着重要的角色,为用户提供了便捷的用餐解决方案。在这篇文章中,我们将探讨构建高效外卖系统的技术实践,同时提供一些基础的代码示例,帮助开发者更好地理解和应用这些技术。 构建外卖系统首先需要选择合适的技术栈。以下是一个简单的技

    2024年01月19日
    浏览(41)
  • TPC-DS 测试是否支持 Glue Data Catalog?

    在上一篇文章《在Hive/Spark上执行TPC-DS基准测试 (PARQUET格式)》中,我们详细介绍了具体的操作方法,当时的集群使用的是Hive Metastore,所有操作均可成功执行。当集群启用 Glue Data Catalog 时,在执行 add_constraints.sql 时会报错:

    2024年02月12日
    浏览(46)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包