YOLOv5是一种先进的目标检测算法,而YOLOv5-CLS则是YOLOv5的一个变种,专门用于图像分类任务。为了在实际应用中使用YOLOv5-CLS模型,我们需要将其转换为Open Neural Network Exchange (ONNX) 格式,并使用OpenCV DNN库来进行推理。
步骤1: 安装OpenCV和ONNX 首先,你需要确保已经安装了OpenCV和ONNX。可以通过以下命令来安装:
pip install opencv-python
pip install onnx
步骤2: 转换YOLOv5-CLS为ONNX格式 在这一步,我们将使用YOLOv5的官方代码库将YOLOv5-CLS模型转换为ONNX格式。请按照以下步骤进行操作:
- 克隆YOLOv5的官方代码库:
git clone https://github.com/ultralytics/yolov5.git
- 进入yolov5目录,并下载预训练的YOLOv5-CLS模型权重:
cd yolov5 wget https://github.com/ultralytics/yolov5/releases/download/v5.0/yolov5s6.pt
- 运行export.py脚本来将模型转换为ONNX格式:
python export.py --weights yolov5s6.pt --include onnx --img 640
此步骤将生成一个名为'yolov5s6.onnx'的文件,这就是我们要使用的YOLOv5-CLS模型的ONNX版本。
步骤3: 使用OpenCV DNN进行推理 现在,我们已经准备好进行推理了。下面是一个简单的示例代码,展示了如何使用OpenCV DNN库加载和运行YOLOv5-CLS模型:
import cv2 # 加载YOLOv5-CLS模型 net = cv2.dnn.readNetFromONNX("yolov5s6.onnx") # 加载图像 image = cv2.imread("test.jpg") # 创建blob并设置输入 blob = cv2.dnn.blobFromImage(image, 1/255., (640, 640), swapRB=True) net.setInput(blob) # 进行推理 output = net.forward() # 解析推理结果 classes = open("coco.names").read().strip().split("\n") for detection in output[0, 0]: scores = detection[5:] class_id = np.argmax(scores) confidence = scores[class_id] if confidence > 0.5: label = f"{classes[class_id]}: {confidence:.2f}" print(label) # 显示图像 cv2.imshow("Image", image) cv2.waitKey(0) cv2.destroyAllWindows()
请注意,上述代码中我们假设已经有一个名为'test.jpg'的测试图像和一个包含类别名称的 'coco.names' 文件。文章来源:https://www.toymoban.com/news/detail-559304.html
结论: 本文介绍了如何使用OpenCV DNN库来进行YOLOv5-CLS模型的推理。我们首先将YOLOv5-CLS模型转换为ONNX格式,然后使用OpenCV DNN库加载和运行该模型进行图像分类。通过按照本文提供的步骤和示例代码,你可以轻松地在实际应用中使用YOLOv5-CLS模型进行图像分类任务。文章来源地址https://www.toymoban.com/news/detail-559304.html
到了这里,关于使用OpenCV DNN推理YOLOv5-CLS转换后的ONNX分类模型的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!