多旋翼物流无人机节能轨迹规划(Python代码实现)

这篇具有很好参考价值的文章主要介绍了多旋翼物流无人机节能轨迹规划(Python代码实现)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

  

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🌈3 Python代码实现

🎉4 参考文献


💥1 概述

多旋翼物流无人机的节能轨迹规划是一项重要的技术,可以有效减少无人机的能量消耗,延长飞行时间,提高物流效率。下面是一些常见的节能轨迹规划方法:

  1. 最短路径规划:通过寻找起点和终点之间的最短路径,减少飞行距离,从而节省能量消耗。可以使用经典的最短路径算法如Dijkstra算法和A*算法来实现。

  2. 动态路径规划:考虑当前环境的动态变化,比如风速、天气状况和地形高度等因素,并实时优化飞行路径。这样可以避免飞行过程中遭受很大的阻力,从而减少能量消耗。

  3. 高效充电站布置:合理规划充电站的位置,使得无人机在物流任务执行过程中可以方便地进行补充能量。这样无人机可以减少回程飞行距离,节省能量。

  4. 光伏充电:在无人机上安装太阳能电池板,通过太阳能充电来提供能源。这种方式可以减少对传统电力的依赖,减少碳排放。

  5. 多机协同飞行:通过与其他物流无人机进行协同飞行,在空中形成集群,减少空气阻力,提高整体能源利用效率。

总之,节能轨迹规划为多旋翼物流无人机提供了较大的优化空间,通过合理规划飞行路径、优化充电策略以及使用新能源技术,可以显著减少能量消耗,提高物流效率。

本文考虑静态环境下无人机轨迹轨迹的可行性和能耗特性。

📚2 运行结果

多旋翼物流无人机节能轨迹规划(Python代码实现),无人机,python,开发语言

 多旋翼物流无人机节能轨迹规划(Python代码实现),无人机,python,开发语言

多旋翼物流无人机节能轨迹规划(Python代码实现),无人机,python,开发语言

部分代码:

def VelDataAboutTime():
    blocks = []
    b1 = Block(0, 0, 0, 150, 200, 200)   # (x1, y1, z1, x2, y2, z2)
    b2 = Block(100, 150, 120, 300, 400, 450)  # (x1, y1, z1, x2, y2, z2)
    b3 = Block(250, 350, 400, 500, 480, 500)   # (x1, y1, z1, x2, y2, z2)
    b4 = Block(420, 220, 200, 650, 400, 450)   # (x1, y1, z1, x2, y2, z2)
    b5 = Block(550, 80, 150, 650, 400, 300)   # (x1, y1, z1, x2, y2, z2)
    b6 = Block(600, 80, 50, 800, 150, 200)   # (x1, y1, z1, x2, y2, z2)
    blocks.append(b1)
    blocks.append(b2)
    blocks.append(b3)
    blocks.append(b4)
    blocks.append(b5)
    blocks.append(b6)
    block2Ds = []
    for b in blocks:
        block2Ds.append(Block2D(b.x1, b.y1, b.x2, b.y2))
    goal = [800, 100, 60]
    c_x = []  # 每段 (x1, x2)
    c_y = []  # 每段 (y1, y2)
    c_z = []  # 每段 (z1, z2)
    corridor = []
    for block in blocks:
        c_x.append([block.x1, block.x2])  # 提取出每一段的 (x1,x2)
        c_y.append([block.y1, block.y2])  # 提取出每一段的 (y1,y2)
        c_z.append([block.z1, block.z2])  # 提取出每一段的 (z1,z2)
    corridor.append(c_x)
    corridor.append(c_y)
    corridor.append(c_z)

    time = [
        [13, 21, 9, 12, 12, 13],
        [16, 23, 10, 13, 13, 15],
        [18, 25, 11, 15, 15, 16],
        [20, 27, 13, 16, 16, 18],
        [22, 29, 14, 18, 18, 19]
    ]

    # time = [13, 21, 9, 12, 12, 13]  # 80  2.68677585e+04
    # time = [16, 23, 10, 13, 13, 15] # 90  2.88795396e+04
    # time = [18, 25, 11, 15, 15, 16]  # 100  3.10684295e+04
    # time = [20, 27, 13, 16, 16, 18]  # 110   3.33565508e+04
    # time = [22, 29, 14, 18, 18, 19]  # 120  3.57001138e+04

    for i in range(5):
        print("============================================")
        energy, power, s, vel = UAV3D(time[i], goal, corridor)
        print(energy)

        """ save vel to excel """
        vel_x = list(np.array(vel[0]).flatten())
        vel_y = list(np.array(vel[1]).flatten())
        vel_z = list(np.array(vel[2]).flatten())

        for index in range(len(vel_x)):
            velocity = math.sqrt(vel_x[index] ** 2 + vel_y[index] ** 2 + vel_z[index] ** 2)
            CVXsheet.write(index, i, velocity)
    workbook.save('Velocity.xls')

def plot_blocks(blocks):
    plt.figure(1)
    ax = plt.axes(projection='3d')
    ax.set_xlabel('X(m)')
    ax.set_ylabel('Y(m)')
    ax.set_zlabel('Z(m)')
    # ax.set_xticks(np.linspace(0, 100, 4))
    # ax.set_yticks(np.linspace(0, 100, 4))
    # ax.set_zticks(np.linspace(0, 100, 4))
    ax.set_xlim(0, 1000)
    ax.set_ylim(0, 1000)

🌈3 Python代码实现

🎉4 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]Wu Kunpeng (2022) Energy-Efficient Trajectory Planning for Multi-rotor Logistics UAVs文章来源地址https://www.toymoban.com/news/detail-560737.html

到了这里,关于多旋翼物流无人机节能轨迹规划(Python代码实现)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 强化学习应用(六):基于Q-learning的无人机物流路径规划研究(提供Python代码)

    Q-learning是一种强化学习算法,用于解决基于马尔可夫决策过程(MDP)的问题。它通过学习一个价值函数来指导智能体在环境中做出决策,以最大化累积奖励。 Q-learning算法的核心思想是通过不断更新一个称为Q值的表格来学习最优策略。Q值表示在给定状态下采取某个动作所能

    2024年02月22日
    浏览(47)
  • 强化学习应用(四):基于Q-learning的无人机物流路径规划研究(提供Python代码)

    Q-learning是一种强化学习算法,用于解决基于马尔可夫决策过程(MDP)的问题。它通过学习一个价值函数来指导智能体在环境中做出决策,以最大化累积奖励。 Q-learning算法的核心思想是通过不断更新一个称为Q值的表格来学习最优策略。Q值表示在给定状态下采取某个动作所能

    2024年01月17日
    浏览(51)
  • 强化学习应用(五):基于Q-learning的无人机物流路径规划研究(提供Python代码)

    Q-learning是一种强化学习算法,用于解决基于马尔可夫决策过程(MDP)的问题。它通过学习一个价值函数来指导智能体在环境中做出决策,以最大化累积奖励。 Q-learning算法的核心思想是通过不断更新一个称为Q值的表格来学习最优策略。Q值表示在给定状态下采取某个动作所能

    2024年01月16日
    浏览(65)
  • 基于人工蜂群算法多无人机轨迹规划

    # 生物背景 蜜蜂是一种群居生物,生物学家研究发现蜜蜂以跳舞的方式来交换蜜源信息。根据分工的不同,蜜蜂被分为三个工种: 引领峰、跟随蜂、侦察蜂 。 侦察蜂 的职责是侦察蜜源(即蜜蜂的食物),一旦某一个侦察蜂找到蜜源后,实际上它的角色就切换为 引领蜂 了。

    2024年01月19日
    浏览(40)
  • 【无人机】采用最基本的自由空间路损模型并且不考虑小尺度衰落(多径多普勒)固定翼无人机轨迹规划(Matlab代码实现)

    💥💥💞💞 欢迎来到本博客 ❤️❤️💥💥 🏆博主优势: 🌞🌞🌞 博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️ 座右铭: 行百里者,半于九十。 📋📋📋 本文目录如下: 🎁🎁🎁 目录 💥1 概述 📚2 运行结果 2.1 文献结果:  2.2 Matlab代码复现结果 🎉

    2024年02月01日
    浏览(65)
  • python 无人机、飞机轨迹(含姿态角)可视化方法

    ​ 目标:在三维直角坐标系中画出包含无人机位置pos、偏航角yaw、俯仰角pitch、滚转角roll等姿态的飞行轨迹。 ​ 思路:同时建立机体坐标系和直角坐标系,飞机的所有点在机体坐标系中的坐标是不变的,而通过俯仰角pitch、偏航角yaw以及滚转角pitch就可以完成从机体坐标系到

    2023年04月25日
    浏览(160)
  • 无人机基础知识:多旋翼无人机各模式控制框图

    无人机(Unmanned Aerial Vehicle),指的是一种由动力驱动的、无线遥控或自主飞行、机上无人驾驶并可重复使用的飞行器,飞机通过机载的计算机系统自动对飞行的平衡进行有效的控制,并通过预先设定或飞机自动生成的复杂航线进行飞行,并在飞行过程中自动执行相关任务和

    2023年04月09日
    浏览(139)
  • 旋翼无人机常用仿真工具

    简单的质点(也可以加上动力学姿态),用urdf模型在rviz中显示无人机和飞行轨迹、地图等。配合ROS代码使用,轻量化适合多机。典型的比如浙大ego-planner的仿真: https://github.com/ZJU-FAST-Lab/ego-planner-swarm.git https://github.com/ethz-asl/rotors_simulator 利用gazebo仿真,提供gazebo中的简单四

    2024年02月07日
    浏览(50)
  • 多旋翼无人机调试问题分析

    一、电机和螺旋桨检查 在多旋翼无人机的调试过程中,首先需要检查电机和螺旋桨的状态。电机应转动灵活,无卡滞现象,且无明显磨损。螺旋桨应安装牢固,无松动现象,且桨叶完好无损。若发现问题,应及时更换或维修。 二、电池和充电器检查 电池是无人机飞行的能量

    2024年01月24日
    浏览(64)
  • 【无人机】基于 ode45实现四旋翼无人机姿态仿真附Matlab代码

     ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进, 代码获取、论文复现及科研仿真合作可私信。 🍎个人主页:Matlab科研工作室 🍊个人信条:格物致知。 更多Matlab完整代码及仿真定制内容点击👇 智能优化算法       神经网络预测       雷达通信    

    2024年02月03日
    浏览(105)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包