机器学习洞察 | 分布式训练让机器学习更加快速准确

这篇具有很好参考价值的文章主要介绍了机器学习洞察 | 分布式训练让机器学习更加快速准确。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

机器学习能够基于数据发现一般化规律的优势日益突显,我们看到有越来越多的开发者关注如何训练出更快速、更准确的机器学习模型,而分布式训练 (Distributed Training) 则能够大幅加速这一进程。

亚马逊云科技开发者社区为开发者们提供全球的开发技术资源。这里有技术文档、开发案例、技术专栏、培训视频、活动与竞赛等。帮助中国开发者对接世界最前沿技术,观点,和项目,并将中国优秀开发者或技术推荐给全球云社区。如果你还没有关注/收藏,看到这里请一定不要匆匆划过,点这里让它成为你的技术宝库!

关于在亚马逊云科技上进行分布式训练的话题,在各种场合和论坛我们讨论了很多。随着 PyTorch 这一开源机器学习框架被越来越多的开发者在生产环境中使用,我们也将围绕它展开话题。本文我们将分别探讨在 PyTorch 上的两种分布式训练:数据分布式训练,以及模型分布式训练。

首先我们来看看当今机器学习模型训练的演进趋势中,开发者对模型训练结果的两种迫切需求:

  • 更快速

  • 更准确

更快速的数据分布式训练

对于机器学习模型训练来说,将庞大的训练数据有效拆分,有助于加快训练速度。

机器学习洞察 | 分布式训练让机器学习更加快速准确,机器学习,分布式,人工智能

常见的数据分布式训练方式有两种:

基于参数服务器的数据分布式训练

机器学习洞察 | 分布式训练让机器学习更加快速准确,机器学习,分布式,人工智能

异步)参数服务器 (Parameter Server) : 如 TensorFlow Parameter Server Strategy

对于参数服务器 (Parameter Server) 来说,计算节点被分成两种:

  • Workers:保留一部分的训练数据,并且执行计算;

  • Servers:共同维持全局共享的模型参数。

而 Workers 只和 Servers 有通信,Workers 相互之间没有通信。

参数服务器方式的优点开发者都很熟悉就不赘述了,而参数服务器的一个主要问题是它们对可用网络带宽的利用不够理想,Servers 常常成为通信瓶颈

由于梯度在反向传递期间按顺序可用,因此在任何给定的时刻,从不同服务器发送和接收的数据量都存在不平衡。有些服务器正在接收和发送更多的数据,有些很少甚至没有。随着参数服务器数量的增加,这个问题变得更加严重。

基于 Ring ALL-Reduce 的数据分布式训练

机器学习洞察 | 分布式训练让机器学习更加快速准确,机器学习,分布式,人工智能

(同步)Ring All-Reduce: 如 Horovod 和 PyTorch DDP

Ring All-Reduce 的网络连接是一个环形,这样就不需要单独的 GPU 做 Server。6 个 GPU 独立做计算,用各自的数据计算出各自的随机梯度,然后拿 6 个随机梯度的相加之和来更新模型参数。为了求 6 个随机梯度之和,我们需要做 All-Reduce。在全部的 GPU 都完成计算之后,通过 Ring All-Reduce 转 2 圈(第 1 圈加和,第 2 圈广播这个加和),每个 GPU 就有了 6 个梯度的相加之和。注意算法必须是同步算法,因为 All-Reduce 需要同步(即等待所有的 GPU 计算出它们的梯度)。

Ring All-Reduce 的主要问题是:

  • 通过 Ring All-Reduce 转圈传递信息时,例如:G0 传递给 G1 时,其它 GPU 都在闲置状态;因此,这种步进时间越长,GPU 闲置时间就越长;而 GPU 越多这种通信代价就越大;

  • All-Reduce 的资源会占用宝贵的 GPU 资源,所以会在扩展的时候,面临效率挑战。

实例:Amazon SageMaker 数据并行的分布式方法

那么如何尽可能消除上述弊端?我们通过亚马逊云科技在 Amazon SageMaker 上的数据并行实例来演示如何解决这一问题。

SageMaker 从头开始构建新的 All-Reduce 算法,以充分利用亚马逊云科技网络和实例拓扑,利用 EC2 实例之间的节点到节点通信。

机器学习洞察 | 分布式训练让机器学习更加快速准确,机器学习,分布式,人工智能

这样做的优势在于:

  • 引入了一种名为平衡融合缓冲区的新技术,以充分利用带宽。GPU 中的缓冲区将梯度保持到阈值大小,然后复制到 CPU 内存,分片成 N 个部分,然后将第 i 个部分发送到第 i 个服务器。平衡服务器发送和接收的数据,有效利用带宽。

  • 可以有效地将 All-Reduce 从 GPU 转移到 CPU。

我们能够重叠向后传递和 All-Reduce,从而缩短步进时间,释放 GPU 资源用于计算。

在这里分享关键的 PyTorch 代码步骤:

  1. 更新训练脚本

与非分布式训练不同的是,在这里我们输入 mdistributed.dataparallel.torch.torch_smdbp 的模型:

# Import SMDataParallel PyTorch Modules
import smdistributed.dataparallel.torch.torch_smddp
  1. 提交训练任务

在这里指定一个开关,打开数据并行即可。这样可以非常方便地调试,而不用在底层配置上花费时间。

# Training using SMDataParallel Distributed Training Framework
      distribution={"smdistributed": 
          {"dataparallel": 
                 {"enabled": True
                 }
          }
       },
      debugger_hook_config=False,

您可以在 GitHub 上查看完整代码示例:

Amazon Sagemaker Examples

  • https://github.com/aws/amazon-sagemaker-examples/blob/main/training/distributed_training/pytorch/data_parallel/mnist/code/train_pytorch_smdataparallel_mnist.py?trk=cndc-detail

  • https://github.com/aws/amazon-sagemaker-examples/blob/main/training/distributed_training/pytorch/data_parallel/mnist/pytorch_smdataparallel_mnist_demo.ipynb?trk=cndc-detail

更准确的模型分布式训练

众所周知,模型越大,那么预测结果的准确度越高。

机器学习洞察 | 分布式训练让机器学习更加快速准确,机器学习,分布式,人工智能

那么在面对庞大模型的时候如何进行模型并行?我们推荐开发者使用以下方式:

自动模型拆分

主要的优化策略基于内存使用和计算负载,从而更好地实现大模型的兼容。

  • 平衡内存使用:平衡每台设备上存储的可训练参数和激活次数的总数。

  • 平衡计算负载:平衡每台设备中执行的操作次数。

流水线执行计划

Amazon Sagemaker PyTorch SDK 中可以选择两种方式实现:

  • 简单流水线:需要等前项全部计算完之后才能进行后项的计算。

机器学习洞察 | 分布式训练让机器学习更加快速准确,机器学习,分布式,人工智能

  • 交错流水线:通过更高效利用 GPU 来实现更好的性能,包括模型并行等方式。

机器学习洞察 | 分布式训练让机器学习更加快速准确,机器学习,分布式,人工智能

Amazon SageMaker 分布式模型并行库的核心功能是流水线执行 (Pipeline Execution Schedule) ,它决定了模型训练期间跨设备进行计算和数据处理的顺序。流水线是一种通过让 GPU 在不同的数据样本上同时进行计算,从而在模型并行度中实现真正的并行化技术,并克服顺序计算造成的性能损失。

流水线基于将一个小批次拆分为微批次,然后逐个输入到训练管道中,并遵循库运行时定义的执行计划。微批次是给定训练微型批次的较小子集。管道调度决定了在每个时隙由哪个设备执行哪个微批次。例如,根据流水线计划和模型分区,GPU i 可能会在微批处理 b 上执行(向前或向后)计算,而 GPU i+1 对微批处理 b+1 执行计算,从而使两个 GPU 同时处于活动状态。

该库提供了两种不同的流水线计划,简单式和交错式,可以使用 SageMaker Python SDK 中的工作流参数进行配置。在大多数情况下,交错流水线可以通过更高效地利用 GPU 来实现更好的性能。

更多相关信息可参考:

SageMaker 模型并行库的核心功能 - 亚马逊 SageMaker

PyTorch 模型并行的分布式训练的关键步骤如下(以PyTorch SageMaker Distributed Model Parallel GPT2 代码为例):

机器学习洞察 | 分布式训练让机器学习更加快速准确,机器学习,分布式,人工智能

  1. 更新训练脚本

a. Import 模型并行模块

b. 带入参数的模型并行的初始化 smp.int (smp_config)

详细代码请参考:https://github.com/aws/amazon-sagemaker-examples/blob/main/training/distributed_training/pytorch/model_parallel/gpt2/train_gpt_simple.py?trk=cndc-detail

  1. 提交训练任务

a. 消息传递接口 (MPI) 是编程并行计算机程序的基本通信协议,这里可描述每台机器上的 GPU 数量等参数

b. 激活模型分布式训练框架和相关配置等

详细代码请参考:https://github.com/aws/amazon-sagemaker-examples/blob/main/training/distributed_training/pytorch/model_parallel/gpt2/train_gpt_simple.py?trk=cndc-detail

实例:Amazon SageMaker 分布式训练

训练医疗计算机视觉 (CV) 模型需要可扩展的计算和存储基础架构。下图案例向您展示如何将医疗语义分割训练工作负载从 90 小时减少到 4 小时。

机器学习洞察 | 分布式训练让机器学习更加快速准确,机器学习,分布式,人工智能

图片来源:官方博客《使用 Amazon SageMaker 训练大规模医疗计算机视觉模型》

解决方案中使用了 Amazon SageMaker 处理进行分布式数据处理,使用 SageMaker 分布式训练库来加快模型训练。数据 I/O、转换和网络架构是使用 PyTorch 和面向人工智能的医疗开放网络 (MONAI) 库构建的。

在下篇文章中,我们将继续关注无服务器推理,请持续关注 Build On Cloud 微信公众号。

往期推荐

  • 机器学习洞察 | 挖掘多模态数据机器学习的价值

机器学习洞察 | 分布式训练让机器学习更加快速准确,机器学习,分布式,人工智能

作者黄浩文

亚马逊云科技资深开发者布道师,专注于 AI/ML、Data Science 等。拥有 20 多年电信、移动互联网以及云计算等行业架构设计、技术及创业管理等丰富经验,曾就职于 Microsoft、Sun Microsystems、中国电信等企业,专注为游戏、电商、媒体和广告等企业客户提供 AI/ML、数据分析和企业数字化转型等解决方案咨询服务。

 文章来源:https://dev.amazoncloud.cn/column/article/63e32dd06b109935d3b77259?sc_medium=regulartraffic&sc_campaign=crossplatform&sc_channel=CSDN文章来源地址https://www.toymoban.com/news/detail-560871.html

到了这里,关于机器学习洞察 | 分布式训练让机器学习更加快速准确的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 在Kubernetes上部署分布式深度学习训练平台

    作者:禅与计算机程序设计艺术 1.1 什么是深度学习? 1.2 为什么需要深度学习? 1.3 深度学习平台架构图 # 2.基本概念术语说明 2.1 Kubernetes 2.2 GPU 2.3 MPI # 3.核心算法原理和具体操作步骤以及数学公式讲解 3.1 数据加载流程 3.2 网络结构设计 3.3 激活函数设计 3.4 损失函数设计 3

    2024年02月07日
    浏览(31)
  • 【深度学习】【分布式训练】Collective通信操作及Pytorch示例

    相关博客 【Megatron-DeepSpeed】张量并行工具代码mpu详解(一):并行环境初始化 【Megatron-DeepSpeed】张量并行工具代码mpu详解(二):Collective通信操作的封装mappings 【深度学习】【分布式训练】DeepSpeed:AllReduce与ZeRO-DP 【深度学习】混合精度训练与显存分析 【深度学习】【分布式训练

    2023年04月13日
    浏览(28)
  • 高级分布式系统-第15讲 分布式机器学习--神经网络理论

    高级分布式系统汇总:高级分布式系统目录汇总-CSDN博客 模糊控制在处理数值数据、自学习能力等方面还远没有达到人脑的境界。人工神经网络从另一个角度出发,即从人脑的生理学和心理学着手,通过人工模拟人脑的工作机理来实现机器的部分智能行为。 人工神经网络(简

    2024年01月19日
    浏览(32)
  • PyTorch Lightning:通过分布式训练扩展深度学习工作流

              欢迎来到我们关于 PyTorch Lightning 系列的第二篇文章!在上一篇文章中,我们向您介绍了 PyTorch Lightning,并探讨了它在简化深度学习模型开发方面的主要功能和优势。我们了解了 PyTorch Lightning 如何为组织和构建 PyTorch 代码提供高级抽象,使研究人员和从业者能够

    2024年02月11日
    浏览(31)
  • 1、pytorch分布式数据训练结合学习率周期及混合精度

    正如标题所写,我们正常的普通训练都是单机单卡或单机多卡。而往往一个高精度的模型需要训练时间很长,所以DDP分布式数据并行和混合精度可以加速模型训练。混精可以增大batch size. 如下提供示例代码,经过官网查阅验证的。原始代码由百度文心一言提供。 问题:pytor

    2024年02月07日
    浏览(28)
  • 分布式机器学习(Parameter Server)

    分布式机器学习中,参数服务器(Parameter Server)用于管理和共享模型参数,其基本思想是将模型参数存储在一个或多个中央服务器上,并通过网络将这些参数共享给参与训练的各个计算节点。每个计算节点可以从参数服务器中获取当前模型参数,并将计算结果返回给参数服务器

    2024年02月06日
    浏览(29)
  • 机器学习分布式框架ray tune笔记

    Ray Tune作为Ray项目的一部分,它的设计目标是简化和自动化机器学习模型的超参数调优和分布式训练过程。Ray Tune简化了实验过程,使研究人员和数据科学家能够高效地搜索最佳超参数,以优化模型性能。 Ray Tune的主要特点包括: 超参数搜索空间规范 : Ray Tune允许您使用多种方

    2024年02月15日
    浏览(32)
  • 机器学习分布式框架ray运行xgboost实例

            Ray是一个开源的分布式计算框架,专门用于构建高性能的机器学习和深度学习应用程序。它的目标是简化分布式计算的复杂性,使得用户能够轻松地将任务并行化并在多台机器上运行,以加速训练和推理的速度。Ray的主要特点包括支持分布式任务执行、Actor模型、

    2024年02月15日
    浏览(34)
  • 机器学习分布式框架ray运行TensorFlow实例

    使用Ray来实现TensorFlow的训练是一种并行化和分布式的方法,它可以有效地加速大规模数据集上的深度学习模型的训练过程。Ray是一个高性能、分布式计算框架,可以在集群上进行任务并行化和数据并行化,从而提高训练速度和可扩展性。 以下是实现TensorFlow训练的概括性描述

    2024年02月15日
    浏览(39)
  • 王益分布式机器学习讲座~Random Notes (1)

    并行计算是一种同时使用多个计算资源(如处理器、计算节点)来执行计算任务的方法。通过将计算任务分解为多个子任务,这些子任务可以同时在不同的计算资源上执行,从而实现加速计算过程并提高计算效率。 并行计算框架是一种软件工具或平台,用于管理和协调并行计

    2024年02月12日
    浏览(31)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包