代码以及详细注释:
import torch
import torch.utils.data as Data
import torch.nn.functional as F
import matplotlib.pyplot as plt
# torch.manual_seed(1) # reproducible
"""
超参数
"""
# 学习率
LR = 0.01
# 批大小
BATCH_SIZE = 32
# 轮次
EPOCH = 12
# 造数据
x = torch.unsqueeze(torch.linspace(-1, 1, 1000), dim=1)
y = x.pow(2) + 0.1*torch.normal(torch.zeros(*x.size()))
# # plot dataset
# plt.scatter(x.numpy(), y.numpy())
# plt.show()
# put dateset into torch dataset
torch_dataset = Data.TensorDataset(x, y)
# 数据加载器
loader = Data.DataLoader(dataset=torch_dataset, batch_size=BATCH_SIZE, shuffle=True, num_workers=2,)
# default network
class Net(torch.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.hidden = torch.nn.Linear(1, 20) # hidden layer
self.predict = torch.nn.Linear(20, 1) # output layer
def forward(self, x):
x = F.relu(self.hidden(x)) # activation function for hidden layer
x = self.predict(x) # linear output
return x
if __name__ == '__main__':
# 相同的网络结构
net_SGD = Net()
net_Momentum = Net()
net_RMSprop = Net()
net_Adam = Net()
# 将上面的网络集成到这里
nets = [net_SGD, net_Momentum, net_RMSprop, net_Adam]
# 不同的优化器
opt_SGD = torch.optim.SGD(net_SGD.parameters(), lr=LR)
opt_Momentum = torch.optim.SGD(net_Momentum.parameters(), lr=LR, momentum=0.8)
opt_RMSprop = torch.optim.RMSprop(net_RMSprop.parameters(), lr=LR, alpha=0.9)
opt_Adam = torch.optim.Adam(net_Adam.parameters(), lr=LR, betas=(0.9, 0.99))
# 将上面的优化器集成到这里
optimizers = [opt_SGD, opt_Momentum, opt_RMSprop, opt_Adam]
# 损失函数
loss_func = torch.nn.MSELoss()
losses_his = [[], [], [], []] # record loss
# 训练轮次
for epoch in range(EPOCH):
print('Epoch: ', epoch)
# 分批训练
for step, (b_x, b_y) in enumerate(loader): # for each training step
for net, opt, l_his in zip(nets, optimizers, losses_his):
output = net(b_x) # get output for every net
loss = loss_func(output, b_y) # compute loss for every net
opt.zero_grad() # clear gradients for next train
loss.backward() # backpropagation, compute gradients
opt.step() # apply gradients
l_his.append(loss.data) # loss recoder
# 绘图
labels = ['SGD', 'Momentum', 'RMSprop', 'Adam']
for i, l_his in enumerate(losses_his):
plt.plot(l_his, label=labels[i])
plt.legend(loc='best')
plt.xlabel('Steps')
plt.ylabel('Loss')
plt.ylim((0, 0.2))
plt.show()
运行结果:
文章来源地址https://www.toymoban.com/news/detail-561860.html
文章来源:https://www.toymoban.com/news/detail-561860.html
到了这里,关于深度学习——优化器Optimizer的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!