1.生产者推送数据
常用参数
bootstrap.servers:Kafka集群中的Broker列表,格式为host1:port1,host2:port2,…。生产者会从这些Broker中选择一个可用的Broker作为消息发送的目标Broker。
acks:Broker对消息的确认模式。可选值为0、1、all。0表示生产者不会等待Broker的任何确认消息;1表示生产者会等待Broker的Leader副本确认消息;all表示生产者会等待所有副本都确认消息。确认模式越高,可靠性越高,但延迟也越大。
retries:消息发送失败时的重试次数。默认值为0,表示不进行重试。可以将其设置为大于0的值,例如3,表示最多重试3次。
batch.size:消息批量发送的大小。当生产者累积到一定数量的消息时,会将其打包成一个批次一次性发送给Broker。默认值为16384字节,即16KB。
linger.ms:消息发送的延迟时间。生产者会等待一定的时间,以便将更多的消息打包成一个批次一次性发送给Broker。默认值为0,表示立即发送。设置较大的值可以提高吞吐量,但可能会增加消息的延迟。
buffer.memory:生产者可用于缓存消息的内存大小。默认值为33554432字节,即32MB。如果生产者生产消息的速度快于发送消息的速度,可能会导致缓存溢出。可以调整该参数来适应生产者的生产速度。
key.serializer:Key的序列化器。Kafka消息可以包含Key和Value,Key和Value都需要进行序列化。该参数指定Key的序列化器。
value.serializer:Value的序列化器。该参数指定Value的序列化器。
max.block.ms:生产者在发送消息之前等待Broker元数据信息的最长时间。如果在该时间内无法获取到Broker元数据信息,则会抛出TimeoutException异常。默认值为60000毫秒,即60秒。
compression.type:消息压缩类型。可选值为none、gzip、snappy、lz4。默认值为none,表示不进行压缩。压缩可以减少消息的传输大小,提高网络带宽的利用率,但会增加CPU的消耗。
interceptor.classes:消息拦截器列表。可以指定多个消息拦截器对消息进行加工处理。例如,可以在消息中添加时间戳、添加消息来源等信息。
以上参数只是一部分,Kafka生产者还有更多参数可以进行配置。需要根据实际情况选择合适的参数进行配置。
例子
下面是一个单例模式配置 kafka生产者的例子(避免多次创建实例,减少资源的消耗)
public class SingletonKafkaProducerExample {
private static SingletonKafkaProducerExample instance;
private static Producer<String, String> producer;
private SingletonKafkaProducerExample() {
//参数设置
Properties props = new Properties();
props.put("bootstrap.servers", "ip:端口");
props.put("acks", "all");
props.put("max.block.ms",120000);//默认60s
props.put("retries", 3)//默认0;
props.put("batch.size", 16384);
props.put("linger.ms", 1);
props.put("buffer.memory", 33554432);
props.put("request.timeout.ms",60*1000);
props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
//sasl认证 (根据实际情况看是否配置)
props.put("security.protocol", "SASL_PLAINTEXT");
props.put("sasl.mechanism", "PLAIN");
props.put("sasl.jaas.config", "org.apache.kafka.common.security.plain.PlainLoginModule required username='username' password='password';");
producer = new KafkaProducer<>(props);
logger.info("kafka连接成功");
}
public static SingletonKafkaProducerExample getInstance() {
if (instance == null) {
synchronized (SingletonKafkaProducerExample.class) {
if (instance == null) {
instance = new SingletonKafkaProducerExample();
}
}
}
return instance;
}
public void sendMessage(String topic, String key, String value) {
try {
//这里也可以不用设置key和partition,例如不设置分区 系统会使用轮询算法自动匹配partition
ProducerRecord<String, String> record = new ProducerRecord<>(topic, key, value);
Future<RecordMetadata> future = producer.send(record, (metadata, exception) -> {
if (exception != null) {
System.err.println("发送消息到" + metadata.topic() + "失败:" + exception.getMessage());
} else {
System.out.println("发送消息到" + metadata.topic() + "成功:partition=" + metadata.partition() + ", offset=" + metadata.offset());
}
});
future.get(); // 等待返回数据
} catch (InterruptedException | ExecutionException e) {
System.err.println("发送消息失败:" + e.getMessage());
}
}
public void closeProducer() {
producer.close();
}
}
以上参数配置只是案例,实际参数配置需要根据业务情况自己设置
下面是生产的方法介绍:
close(): 关闭生产者,释放相关资源。
close(Duration timeout): 在指定的超时时间内关闭生产者,释放相关资源。
initTransactions(): 初始化事务,启用事务支持。
beginTransaction(): 开始事务。
send(ProducerRecord<K, V> record): 发送一条消息记录到指定的主题。
send(ProducerRecord<K, V> record, Callback callback): 发送一条消息记录,并附带一个回调函数用于异步处理发送结果。
send(ProducerRecord<K, V> record, ProducerCallback<T> callback): 发送一条消息记录,并使用自定义的回调函数处理发送结果。
sendOffsetsToTransaction(Map<TopicPartition, OffsetAndMetadata> offsets, String consumerGroupId): 将消费者组的偏移量提交给事务。
partitionsFor(String topic): 获取指定主题的分区信息。
metrics(): 获取生产者的度量指标信息。
flush(): 将所有已挂起的消息立即发送到Kafka服务器,等待服务器确认后再返回。
commitTransaction(): 提交当前事务。
abortTransaction(): 中止当前事务。
sendOffsetsToTransaction(Map<TopicPartition, OffsetAndMetadata> offsets, ConsumerGroupMetadata groupMetadata): 将消费者组的偏移量和消费者组元数据提交给事务。
可能遇见的问题
1.多个topic发送消息的时候总有1.2发送失败 报Failed to update metadata after 60000ms
这种情况出现的原因可能是Kafka集群中Broker的元数据信息还没有被更新到Kafka客户端中,导致Kafka客户端无法连接到指定的Broker。
解决
增加等待时间:可以通过设置max.block.ms属性来增加等待时间
提高重试次数:可以通过设置retries属性来提高重试次数
检查Broker配置
检查网络连接
检查Kafka版本
如果下面3个都没问题,就增加等待时间和重试次数。本人遇到这样的问题解决了
消费者 推送数据
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import java.util.Arrays;
import java.util.Properties;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
public class KafkaConsumerExample {
public static void main(String[] args) {
// 配置消费者参数
Properties props = new Properties();
/*
bootstrap.servers
Kafka集群中Broker的地址列表,格式为"hostname:port",例如:"localhost:9092"。可以配置多个Broker,用逗号分隔。
*/
props.put("bootstrap.servers", "ip:port");
/*
group.id
消费者组的名称,同一个消费者组中的消费者会共享消费消息的责任。例如:"test"。
*/
props.put("group.id", "test");
/*
enable.auto.commit
是否自动提交偏移量,默认为true。如果为false,则需要手动提交偏移量。
*/
props.put("enable.auto.commit", "true");
/*
session.timeout.ms
消费者会话超时时间(毫秒),如果消费者在该时间内没有向Kafka Broker发送心跳,则会被认为已经失效。默认10000毫秒。
*/
props.put("session.timeout.ms", "30000");
/*
auto.offset.reset
如果消费者在初始化时没有指定偏移量或指定的偏移量不存在,则从哪个位置开始消费,默认latest,即从最新的消息开始消费。其他可选值为earliest和none。
*/
props.put("auto.offset.reset", "earliest");
/*
key.deserializer
key的反序列化方式,例如:"org.apache.kafka.common.serialization.StringDeserializer"。
*/
props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
/*
value.deserializer
value的反序列化方式,例如:"org.apache.kafka.common.serialization.StringDeserializer"。
*/
props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
/*
max.poll.records
每次拉取消息的最大记录数,默认500条。
*/
props.put("max.poll.records", "10000");
/*
fetch.min.bytes
每次拉取的最小字节数,默认1字节。
fetch.max.bytes
每次拉取的最大字节数,默认52428800字节,即50MB。
fetch.max.wait.ms
最长等待时间(毫秒),如果在该时间内没有拉取到任何消息,则返回空结果。默认500毫秒。
*/
props.put("fetch.min.bytes", "1024");
props.put("fetch.max.bytes", "1048576");
props.put("fetch.max.wait.ms", "500");
/*
max.partition.fetch.bytes
每个分区最大拉取字节数,默认1048576字节,即1MB。
*/
props.put("max.partition.fetch.bytes", "1024");
/*
connections.max.idle.ms
最大空闲连接时间(毫秒),超过该时间则连接被认为已经过期并关闭。默认540000毫秒,即9分钟。
*/
props.put("connections.max.idle.ms", "540000");
/*
request.timeout.ms
请求超时时间(毫秒),如果在该时间内没有收到Broker的响应,则认为请求失败。默认30000毫秒。
*/
props.put("request.timeout.ms", "40000");
/*
retry.backoff.ms
重试等待时间(毫秒),如果请求失败,则等待一段时间后再次重试。默认500毫秒。
*/
props.put("retry.backoff.ms", "500");
/*
security.protocol
安全协议类型,例如SSL或SASL_SSL。
ssl.keystore.location
SSL证书的路径和名称。
ssl.keystore.password
SSL证书的密码。
ssl.truststore.location
SSL信任证书库的路径和名称。
ssl.truststore.password
SSL信任证书库的密码。
*/
props.put("security.protocol", "SSL");
props.put("ssl.keystore.location", "/path/to/keystore");
props.put("ssl.keystore.password", "password");
props.put("ssl.truststore.location", "/path/to/truststore");
props.put("ssl.truststore.password", "password");
// 创建Kafka消费者实例
KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props);
// 订阅主题
consumer.subscribe(Arrays.asList("my-topic"));
// 创建线程池
ExecutorService executor = Executors.newFixedThreadPool(6);
// 消费消息
while (true) {
ConsumerRecords<String, String> records = consumer.poll(100);
for (ConsumerRecord<String, String> record : records) {
// 获取消息所在分区的编号
int partition = record.partition();
// 将消息提交给对应的线程进行处理
executor.submit(new MessageHandler(record.value(), partition));
}
}
}
// 消息处理器
static class MessageHandler implements Runnable {
private final String message;
private final int partition;
public MessageHandler(String message, int partition) {
this.message = message;
this.partition = partition;
}
@Override
public void run() {
// 对消息进行处理
System.out.printf("Partition %d: Message received: %s%n", partition, message);
}
}
}
以上参数根据自己需求填写
可以根据分区 使用多线程执行文章来源:https://www.toymoban.com/news/detail-562168.html
下面是消费者的方法讲解文章来源地址https://www.toymoban.com/news/detail-562168.html
subscribe(Collection<String> topics): 订阅一个或多个主题,开始消费这些主题中的消息。
unsubscribe(): 取消订阅当前已经订阅的所有主题,停止消费消息。
poll(Duration timeout): 从Kafka服务器拉取一批消息记录,该方法会阻塞指定的超时时间,等待服务器返回消息。如果在超时时间内没有收到消息,则返回空记录。
commitSync(): 同步方式提交消费者的消费偏移量(offset),表示消息已成功消费。
commitSync(Duration timeout): 在指定的超时时间内同步提交消费者的消费偏移量。
commitAsync(): 异步方式提交消费者的消费偏移量,不等待提交结果。
commitAsync(OffsetCommitCallback callback): 异步方式提交消费者的消费偏移量,并在提交完成后执行回调函数。
seek(TopicPartition partition, long offset): 将消费者的偏移量(offset)设置为指定分区的指定偏移量,以便从指定位置开始消费消息。
seekToBeginning(Collection<TopicPartition> partitions): 将消费者的偏移量设置为指定分区的最早可用偏移量,重新从分区起始位置开始消费消息。
seekToEnd(Collection<TopicPartition> partitions): 将消费者的偏移量设置为指定分区的最新可用偏移量,继续消费分区中尚未消费的消息。
seekByTimestamp(Map<TopicPartition, Long> timestampsToSearch): 根据时间戳搜索偏移量,并将消费者的偏移量设置为找到的偏移量。
assignment(): 获取当前分配给消费者的所有分区。
pause(Collection<TopicPartition> partitions): 暂停指定分区的消息消费,消费者将不再继续接收这些分区的消息。
resume(Collection<TopicPartition> partitions): 恢复被暂停的指定分区的消息消费,使消费者可以继续接收这些分区的消息。
close(): 关闭消费者,释放相关资源。
到了这里,关于java:Kafka生产者推送数据与消费者接收数据(参数配置以及案例)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!