再api测试时,避免不了高并发的测试情况。所以以下案例为线程并发请求代码,以请求百度为例文章来源:https://www.toymoban.com/news/detail-563470.html
#!/usr/bin/env python
#!coding:utf-8
from __future__ import division
from threading import Thread
import requests
import matplotlib.pyplot as plt
import datetime
import time
import numpy as np
import json
class ThreadTest(Thread):
def __init__(self, func, args=()):
"""
:param func: 被测试的函数
:param args: 被测试的函数的返回值
"""
super(ThreadTest, self).__init__()
self.func = func
self.args = args
def run(self):
self.result=self.func(*self.args)
def getResult(self):
try:
return self.result
except BaseException as e:
return e.args[0]
def faultinJection(code, seconds):
"""
:param code: 状态码
:param seconds: 请求响应时间
:return:
"""
url = "http://www.baidu.com/"
r = requests.post(url=url)
code = r.status_code
seconds = r.elapsed.total_seconds()
return code, seconds
def calculationTime(startTime,endTime):
"""计算两个时间之差,单位是秒"""
return (endTime-startTime).seconds
def getResult(seconds):
"""获取服务端的响应时间信息"""
data = {
'Max': sorted(seconds)[-1],
'Min': sorted(seconds)[0],
'Median': np.median(seconds),
'99%Line': np.percentile(seconds, 99),
'95%Line': np.percentile(seconds, 95),
'90%Line': np.percentile(seconds, 90)
}
return data
def highConcurrent(count):
"""
对服务端发送高并发的请求
:param count: 并发数
:return:
"""
startTime = datetime.datetime.now()
sum = 0
list_count = list()
tasks = list()
results = list()
#失败的信息
fails = []
#成功任务数
success = []
codes = list()
seconds = list()
for i in range(1, count+1):
t = ThreadTest(faultinJection, args=(i, i))
tasks.append(t)
t.start()
for t in tasks:
t.join()
if t.getResult()[0] != 200:
fails.append(t.getResult())
results.append(t.getResult())
endTime=datetime.datetime.now()
for item in results:
codes.append(item[0])
seconds.append(item[1])
for i in range(len(codes)):
list_count.append(i)
#生成可视化的趋势图
# fig, ax = plt.subplots()
# ax.plot(list_count, seconds)
# ax.set(xlabel='number of times', ylabel='Request time-consuming',
# title='olap continuous request response time (seconds)')
# ax.grid()
# fig.savefig('olap.png')
# plt.show()
for i in seconds:
sum += i
rate = sum/len(list_count)
totalTime = calculationTime(startTime=startTime, endTime=endTime)
if totalTime < 1:
totalTime = 1
#吞吐量的计算
try:
throughput = int(len(list_count)/totalTime)
except Exception as e:
throughput = 0
print(e.args[0])
getResult(seconds=seconds)
errorrate = "{}%".format(str(len(fails) / len(list_count) * 100))
throughput = str(throughput)+'/S'
timeData = getResult(seconds=seconds)
dict1 = {
'吞吐量': throughput,
'平均响应时间': rate,
'响应时间': timeData,
'错误率': errorrate,
'请求总数': len(list_count),
'失败数': len(fails),
'总共持续时间': "%0.3fs" %(float((endTime-startTime).total_seconds()))
}
return json.dumps(dict1, indent=True, ensure_ascii=False)
if __name__ == '__main__':
print(highConcurrent(count=20))
上面代码执行完之后会生成如下信息
文章来源地址https://www.toymoban.com/news/detail-563470.html
到了这里,关于python多线程并发请求的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!