FPGA双口RAM使用

这篇具有很好参考价值的文章主要介绍了FPGA双口RAM使用。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

模块名称: dpram() IP Core

双口RAM,有俩组数据线和地址线,读写可以同时进行,FIFO读写可以同时进行,可以看作是双口。分为Simple two-dual RAM和true two-dual RAM。简单双口RAM,一个端口只读,另一个端口只写,且写入和读取的时钟可以不同,位宽比可以不是1:1;而双口RAM两个端口都分别带有读写端口,可以在没有干扰的情况下进行读写,彼此互不干扰。

主要功能 :调用内部的资源,实现数据的读/写功能

实验目的 :了解这些芯片专用硬件资源的情况下,将其合理的应用到对应的系统中

FPGA 芯片的内部结构:fpga 双口ram,fpga开发

fpga 双口ram,fpga开发
fpga 双口ram,fpga开发
fpga 双口ram,fpga开发
1、针对上面的结构图,我们可以看到 几个信号线

data[7:0],表示的是即将写入的数据

wraddress [4:0]: 表示的是数据要写入或者说是数据要存入的地址

wren : 表示数据写入使能信号

readdress[4:0] : 表示读取数据的地址

q[7:0 ]: 表示的是读取的该地址的数据。

clk : 时钟
2、如何使用双端口ram模块

① 一个读端口,一个写端口

②两个都是读/写端口

3、内存结构单元的大小

1、使用字节作为一个存取单

2、使用bit作为一个存取单元

ram 配置的类型
fpga 双口ram,fpga开发
对双口RAM【类似与电脑的内存条空间】的解释

1、选择开辟的8bit(我们在上一张配置的结果中选择的是一个字节)的内存大小,这里是选择了 256字节

2、使用不同的数据对应着不同的位宽

理解: 这个的话就类似与整体的数据大小(size)和address的分配的一种对应关系

由上述 256字节来说

假设我们使用 8位数据输入,那么address就是[7:0]的地址

那么,如果在输出端配置的是:

​ ① 8位数据输出,即q[7:0] ,那么 rdaddress也是 [7:0]

​ ②16位数据输出,即q[15:0],那么 rdaddress就是[6:0]即可

也就是说,输入和输出是不一定都是相匹配的,可以根据自己的需求进行更改。

3、申请内存的分配的结构类型

默认选 auto(自动分配内存), M9K 和LCs的还不太了解。
fpga 双口ram,fpga开发
1、第一个是时钟的配置
①选用单时钟
②读和写使用不同的时钟
③输入和输出使用不同的时钟

2、是否要创建读使能信号

​ 下面的配置主要针对的是大于8位的位宽来进行配置的(暂时不管)
fpga 双口ram,fpga开发
1、是否要使用寄存器(默认选择使用即可)

2、创建一个时钟使能信号(不用)

3、创建一个寄存器清零信号(暂时不用)
fpga 双口ram,fpga开发
本次我们使用的读和写数据使用的是同一个时钟,当我们同时在读和写同一个地址的数据的时候,我们需要认为此时q输出的数据是:

​ ① 读取之前的数据

​ ② 我不关心是之前的还是当前写入的(本次选用的是下面的方案)
fpga 双口ram,fpga开发
1、如何初始化你的内存(RAM)

​ ① 让其保持空白

​ ②使用mif文件对内存进行初始化

fpga 双口ram,fpga开发
next
fpga 双口ram,fpga开发
直接finish
本实验主要是熟悉和了解ram的使用:

以下是个人总结:

1、了解ram,其实ram就是我们说的内存,但是在我们实现的时候,就是要对内存执行【读/写】两个操作。

我们一般来说,写操作就是将输入写入到指定的地址中,【读】操作就是将存在在某个地址的数据读取出来。

生活实例:

​ 这个可以理解为我们图书馆里面的书架,每个格子里面都可以存放书本(注:是任意或者非固定目标的书本),然后每个格子里面也各有标号。当我们需要读取的时候,只要对对应的格子编号,就可以找我我们要的书。

​ 这个和ram是类似的,也就是说,地址里面的数据是可以根据自己的想法来改变的。
生成的dpram.v

// megafunction wizard: %RAM: 2-PORT%
// GENERATION: STANDARD
// VERSION: WM1.0
// MODULE: altsyncram 

// ============================================================
// File Name: dpram.v
// Megafunction Name(s):
// 			altsyncram
//
// Simulation Library Files(s):
// 			altera_mf
// ============================================================
// ************************************************************
// THIS IS A WIZARD-GENERATED FILE. DO NOT EDIT THIS FILE!
//
// 13.0.0 Build 156 04/24/2013 SJ Full Version
// ************************************************************


//Copyright (C) 1991-2013 Altera Corporation
//Your use of Altera Corporation's design tools, logic functions 
//and other software and tools, and its AMPP partner logic 
//functions, and any output files from any of the foregoing 
//(including device programming or simulation files), and any 
//associated documentation or information are expressly subject 
//to the terms and conditions of the Altera Program License 
//Subscription Agreement, Altera MegaCore Function License 
//Agreement, or other applicable license agreement, including, 
//without limitation, that your use is for the sole purpose of 
//programming logic devices manufactured by Altera and sold by 
//Altera or its authorized distributors.  Please refer to the 
//applicable agreement for further details.


// synopsys translate_off
`timescale 1 ps / 1 ps
// synopsys translate_on
module dpram (
	clock,
	data,
	rdaddress,
	wraddress,
	wren,
	q);

	input	  clock;
	input	[7:0]  data;
	input	[7:0]  rdaddress;
	input	[7:0]  wraddress;
	input	  wren;
	output	[7:0]  q;
`ifndef ALTERA_RESERVED_QIS
// synopsys translate_off
`endif
	tri1	  clock;
	tri0	  wren;
`ifndef ALTERA_RESERVED_QIS
// synopsys translate_on
`endif

	wire [7:0] sub_wire0;
	wire [7:0] q = sub_wire0[7:0];

	altsyncram	altsyncram_component (
				.address_a (wraddress),
				.clock0 (clock),
				.data_a (data),
				.wren_a (wren),
				.address_b (rdaddress),
				.q_b (sub_wire0),
				.aclr0 (1'b0),
				.aclr1 (1'b0),
				.addressstall_a (1'b0),
				.addressstall_b (1'b0),
				.byteena_a (1'b1),
				.byteena_b (1'b1),
				.clock1 (1'b1),
				.clocken0 (1'b1),
				.clocken1 (1'b1),
				.clocken2 (1'b1),
				.clocken3 (1'b1),
				.data_b ({8{1'b1}}),
				.eccstatus (),
				.q_a (),
				.rden_a (1'b1),
				.rden_b (1'b1),
				.wren_b (1'b0));
	defparam
		altsyncram_component.address_aclr_b = "NONE",
		altsyncram_component.address_reg_b = "CLOCK0",
		altsyncram_component.clock_enable_input_a = "BYPASS",
		altsyncram_component.clock_enable_input_b = "BYPASS",
		altsyncram_component.clock_enable_output_b = "BYPASS",
		altsyncram_component.intended_device_family = "Cyclone IV E",
		altsyncram_component.lpm_type = "altsyncram",
		altsyncram_component.numwords_a = 256,
		altsyncram_component.numwords_b = 256,
		altsyncram_component.operation_mode = "DUAL_PORT",
		altsyncram_component.outdata_aclr_b = "NONE",
		altsyncram_component.outdata_reg_b = "CLOCK0",
		altsyncram_component.power_up_uninitialized = "FALSE",
		altsyncram_component.read_during_write_mode_mixed_ports = "DONT_CARE",
		altsyncram_component.widthad_a = 8,
		altsyncram_component.widthad_b = 8,
		altsyncram_component.width_a = 8,
		altsyncram_component.width_b = 8,
		altsyncram_component.width_byteena_a = 1;


endmodule

// ============================================================
// CNX file retrieval info
// ============================================================
// Retrieval info: PRIVATE: ADDRESSSTALL_A NUMERIC "0"
// Retrieval info: PRIVATE: ADDRESSSTALL_B NUMERIC "0"
// Retrieval info: PRIVATE: BYTEENA_ACLR_A NUMERIC "0"
// Retrieval info: PRIVATE: BYTEENA_ACLR_B NUMERIC "0"
// Retrieval info: PRIVATE: BYTE_ENABLE_A NUMERIC "0"
// Retrieval info: PRIVATE: BYTE_ENABLE_B NUMERIC "0"
// Retrieval info: PRIVATE: BYTE_SIZE NUMERIC "8"
// Retrieval info: PRIVATE: BlankMemory NUMERIC "1"
// Retrieval info: PRIVATE: CLOCK_ENABLE_INPUT_A NUMERIC "0"
// Retrieval info: PRIVATE: CLOCK_ENABLE_INPUT_B NUMERIC "0"
// Retrieval info: PRIVATE: CLOCK_ENABLE_OUTPUT_A NUMERIC "0"
// Retrieval info: PRIVATE: CLOCK_ENABLE_OUTPUT_B NUMERIC "0"
// Retrieval info: PRIVATE: CLRdata NUMERIC "0"
// Retrieval info: PRIVATE: CLRq NUMERIC "0"
// Retrieval info: PRIVATE: CLRrdaddress NUMERIC "0"
// Retrieval info: PRIVATE: CLRrren NUMERIC "0"
// Retrieval info: PRIVATE: CLRwraddress NUMERIC "0"
// Retrieval info: PRIVATE: CLRwren NUMERIC "0"
// Retrieval info: PRIVATE: Clock NUMERIC "0"
// Retrieval info: PRIVATE: Clock_A NUMERIC "0"
// Retrieval info: PRIVATE: Clock_B NUMERIC "0"
// Retrieval info: PRIVATE: IMPLEMENT_IN_LES NUMERIC "0"
// Retrieval info: PRIVATE: INDATA_ACLR_B NUMERIC "0"
// Retrieval info: PRIVATE: INDATA_REG_B NUMERIC "0"
// Retrieval info: PRIVATE: INIT_FILE_LAYOUT STRING "PORT_B"
// Retrieval info: PRIVATE: INIT_TO_SIM_X NUMERIC "0"
// Retrieval info: PRIVATE: INTENDED_DEVICE_FAMILY STRING "Cyclone IV E"
// Retrieval info: PRIVATE: JTAG_ENABLED NUMERIC "0"
// Retrieval info: PRIVATE: JTAG_ID STRING "NONE"
// Retrieval info: PRIVATE: MAXIMUM_DEPTH NUMERIC "0"
// Retrieval info: PRIVATE: MEMSIZE NUMERIC "2048"
// Retrieval info: PRIVATE: MEM_IN_BITS NUMERIC "0"
// Retrieval info: PRIVATE: MIFfilename STRING ""
// Retrieval info: PRIVATE: OPERATION_MODE NUMERIC "2"
// Retrieval info: PRIVATE: OUTDATA_ACLR_B NUMERIC "0"
// Retrieval info: PRIVATE: OUTDATA_REG_B NUMERIC "1"
// Retrieval info: PRIVATE: RAM_BLOCK_TYPE NUMERIC "0"
// Retrieval info: PRIVATE: READ_DURING_WRITE_MODE_MIXED_PORTS NUMERIC "2"
// Retrieval info: PRIVATE: READ_DURING_WRITE_MODE_PORT_A NUMERIC "3"
// Retrieval info: PRIVATE: READ_DURING_WRITE_MODE_PORT_B NUMERIC "3"
// Retrieval info: PRIVATE: REGdata NUMERIC "1"
// Retrieval info: PRIVATE: REGq NUMERIC "0"
// Retrieval info: PRIVATE: REGrdaddress NUMERIC "1"
// Retrieval info: PRIVATE: REGrren NUMERIC "1"
// Retrieval info: PRIVATE: REGwraddress NUMERIC "1"
// Retrieval info: PRIVATE: REGwren NUMERIC "1"
// Retrieval info: PRIVATE: SYNTH_WRAPPER_GEN_POSTFIX STRING "0"
// Retrieval info: PRIVATE: USE_DIFF_CLKEN NUMERIC "0"
// Retrieval info: PRIVATE: UseDPRAM NUMERIC "1"
// Retrieval info: PRIVATE: VarWidth NUMERIC "0"
// Retrieval info: PRIVATE: WIDTH_READ_A NUMERIC "8"
// Retrieval info: PRIVATE: WIDTH_READ_B NUMERIC "8"
// Retrieval info: PRIVATE: WIDTH_WRITE_A NUMERIC "8"
// Retrieval info: PRIVATE: WIDTH_WRITE_B NUMERIC "8"
// Retrieval info: PRIVATE: WRADDR_ACLR_B NUMERIC "0"
// Retrieval info: PRIVATE: WRADDR_REG_B NUMERIC "0"
// Retrieval info: PRIVATE: WRCTRL_ACLR_B NUMERIC "0"
// Retrieval info: PRIVATE: enable NUMERIC "0"
// Retrieval info: PRIVATE: rden NUMERIC "0"
// Retrieval info: LIBRARY: altera_mf altera_mf.altera_mf_components.all
// Retrieval info: CONSTANT: ADDRESS_ACLR_B STRING "NONE"
// Retrieval info: CONSTANT: ADDRESS_REG_B STRING "CLOCK0"
// Retrieval info: CONSTANT: CLOCK_ENABLE_INPUT_A STRING "BYPASS"
// Retrieval info: CONSTANT: CLOCK_ENABLE_INPUT_B STRING "BYPASS"
// Retrieval info: CONSTANT: CLOCK_ENABLE_OUTPUT_B STRING "BYPASS"
// Retrieval info: CONSTANT: INTENDED_DEVICE_FAMILY STRING "Cyclone IV E"
// Retrieval info: CONSTANT: LPM_TYPE STRING "altsyncram"
// Retrieval info: CONSTANT: NUMWORDS_A NUMERIC "256"
// Retrieval info: CONSTANT: NUMWORDS_B NUMERIC "256"
// Retrieval info: CONSTANT: OPERATION_MODE STRING "DUAL_PORT"
// Retrieval info: CONSTANT: OUTDATA_ACLR_B STRING "NONE"
// Retrieval info: CONSTANT: OUTDATA_REG_B STRING "CLOCK0"
// Retrieval info: CONSTANT: POWER_UP_UNINITIALIZED STRING "FALSE"
// Retrieval info: CONSTANT: READ_DURING_WRITE_MODE_MIXED_PORTS STRING "DONT_CARE"
// Retrieval info: CONSTANT: WIDTHAD_A NUMERIC "8"
// Retrieval info: CONSTANT: WIDTHAD_B NUMERIC "8"
// Retrieval info: CONSTANT: WIDTH_A NUMERIC "8"
// Retrieval info: CONSTANT: WIDTH_B NUMERIC "8"
// Retrieval info: CONSTANT: WIDTH_BYTEENA_A NUMERIC "1"
// Retrieval info: USED_PORT: clock 0 0 0 0 INPUT VCC "clock"
// Retrieval info: USED_PORT: data 0 0 8 0 INPUT NODEFVAL "data[7..0]"
// Retrieval info: USED_PORT: q 0 0 8 0 OUTPUT NODEFVAL "q[7..0]"
// Retrieval info: USED_PORT: rdaddress 0 0 8 0 INPUT NODEFVAL "rdaddress[7..0]"
// Retrieval info: USED_PORT: wraddress 0 0 8 0 INPUT NODEFVAL "wraddress[7..0]"
// Retrieval info: USED_PORT: wren 0 0 0 0 INPUT GND "wren"
// Retrieval info: CONNECT: @address_a 0 0 8 0 wraddress 0 0 8 0
// Retrieval info: CONNECT: @address_b 0 0 8 0 rdaddress 0 0 8 0
// Retrieval info: CONNECT: @clock0 0 0 0 0 clock 0 0 0 0
// Retrieval info: CONNECT: @data_a 0 0 8 0 data 0 0 8 0
// Retrieval info: CONNECT: @wren_a 0 0 0 0 wren 0 0 0 0
// Retrieval info: CONNECT: q 0 0 8 0 @q_b 0 0 8 0
// Retrieval info: GEN_FILE: TYPE_NORMAL dpram.v TRUE
// Retrieval info: GEN_FILE: TYPE_NORMAL dpram.inc FALSE
// Retrieval info: GEN_FILE: TYPE_NORMAL dpram.cmp FALSE
// Retrieval info: GEN_FILE: TYPE_NORMAL dpram.bsf FALSE
// Retrieval info: GEN_FILE: TYPE_NORMAL dpram_inst.v FALSE
// Retrieval info: GEN_FILE: TYPE_NORMAL dpram_bb.v TRUE
// Retrieval info: LIB_FILE: altera_mf

测试代码:文章来源地址https://www.toymoban.com/news/detail-563520.html

`timescale 1ns/1ns

`define clk_period 20

module dpram_tb;

	reg clock;
	reg [7:0]data;
	reg [7:0]rdaddress;
	reg [7:0]wraddress;
	reg wren;
	
	wire [7:0]q;
	
	integer i;
	
	dpram dpram0(
		.clock(clock),
		.data(data),
		.rdaddress(rdaddress),
		.wraddress(wraddress),
		.wren(wren),
		.q(q)
	);
	
	initial clock = 1;
	always#(`clk_period/2)clock = ~clock;
	
	initial begin
		data = 0;
		rdaddress = 30;
		wraddress = 0;
		wren = 0;
		#(`clk_period*20 +1 );
		for (i=0;i<=15;i=i+1)begin
			wren = 1;
			data = 255 - i;
			wraddress = i;
			#`clk_period;
		end
		wren = 0;
		#(`clk_period*20);
		for (i=0;i<=15;i=i+1)begin
			rdaddress = i;
			#`clk_period;
		end
		#(`clk_period*20);
		$stop;	
	end

endmodule

到了这里,关于FPGA双口RAM使用的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • FPGA原理与结构——RAM IP核的使用与测试

    系列文章目录:FPGA原理与结构(0)——目录与传送门 目录 一、前言 二、RAM IP核定制 1、RAM IP核 step1 打开vivado工程,点击左侧栏中的IP Catalog step2 在搜索栏搜索RAM,找到Block Memory Generator IP核: 2、IP核定制 step3 Baisc界面定制 step4 端口定制 step5 Other Options step6 Summary 3、IP核例化

    2024年02月11日
    浏览(37)
  • 双口RAM

    RAM上电后每个地址的数据随机,因此如果有什么标志位一定要在上电后先进行初始化。否则有可能上电后读取一次错误的标志位。 (比如flexray读写标志位) 双口RAM(随机存取存储器),即RAM存储器有两个可供CPU读写的端口 两套独立的地址线、数据线和控制线。 在这样的结

    2024年02月12日
    浏览(37)
  • 【Verilog】用双口RAM实现同步FIFO

    端口说明如下表。 双口RAM端口说明: 同步FIFO端口说明: 输入描述: input clk , input rst_n , input winc , input rinc , input [WIDTH-1:0] wdata 输出描述: output reg wfull , output reg rempty , output wire [WIDTH-1:0] rdata 双口RAM和代码框架: 同步FIFO,就是我们学习其他经典计算机语言(如C语言)的数据结

    2024年02月07日
    浏览(36)
  • FPGA原理与结构(8)——块RAM(Block RAM,BRAM)

    系列文章目录:FPGA原理与结构(0)——目录与传送门         大家对于RAM应该并不陌生,RAM就是一张可读可写的存储表,它经常被拿来与ROM进行对比,相比之下,ROM只可读。而在FPGA中,RAM一般可以分成两种,一种是使用LUT资源组成的分布式RAM(DRAM),另一种就是块RAM(B

    2024年02月08日
    浏览(38)
  • 【FPGA】zynq 单端口RAM 双端口RAM 读写冲突 写写冲突

    RAM 的英文全称是 Random Access Memory,即随机存取存储器,简称随机存储器,它可以随时把数据写入任一指定地址的存储单元,也可以随时从任一指定地址的存储单元中读出数据,其读写速度是由时钟频率决定的。 具体的分类讲解可以看SDRAM、DRAM及DDR FLASH ROM概念详解这篇文章

    2024年02月04日
    浏览(49)
  • FPGA之分布RAM(1)

    SLICEM 资源可以实现分布式 RAM。可以实现的 RAM 类型: 单口 RAM 双端口 简单的双端口 四端口 下表给出了通过1SLICEM中的4个LUT可以实现的RAM类型         我们介绍过把 6 输入 LUT 当作 2 个 5输入 LUT 使用,在这里,就可以同一个 LUT 实现数据位宽的增加。对于32X2的4口RAM,如下图

    2024年01月20日
    浏览(48)
  • FPGA原理与结构(6)——分布式RAM(Distributed RAM,DRAM)

    系列文章目录:FPGA原理与结构(0)——目录与传送门 目录 一、RAM概述 1、RAM基本概念 2、FPGA中RAM的分类 二、DRAM详解 1、FPGA资源         2、DRAM的配置形式 2.1 Single-Port(单端口) 2.2 Dual-Port(双端口) 2.3 Quad-Port(四端口) 2.4 Simple Dual-Port(简单双端口) 2.5 更大深度  

    2024年02月08日
    浏览(33)
  • FPGA Develop Note ——— RAM

    RAM 的英文全称是 Random Access Memory ,即随机存取存储器,简称随机存储器。它可以随时把数据 写入 任一指定地址的存储单元,也可以随时从任一指定地址的存储单元中 读出 数据,其 读写速度是由时钟频率决定的 。 Types RAM类型 特性说明 数据读写口数量 地址口数量 Simple P

    2024年03月15日
    浏览(47)
  • (34)FPGA IP设计(RAM)

    1.1 本节目录 1.2 IP核介绍 1.3 FPGA介绍 1.4 Verilog介绍 1.5 Vivado_RAM_IP设计 1.6 结束语 IP核有行为(Behavior)级、结构(Structure)级和物理(Physical)级三个层次的分类,对应着三个种类型的IP核,它们是由硬件描述语言设计的软核(Soft IP Core)、完成结构描述的固核(Firm IP Core) 和基于物理描述并

    2024年01月19日
    浏览(37)
  • FPGA中RAM的结构理解

    看代码的过程中对RAM的结构不是很理解,搞脑子一片浆糊,反复推算,好不容易理清了思路,记录下来,防止忘记。开辟的RAM总容量为128bytes,数据的位宽为32位(即一个单元有32bit数据) RAM结构示意图:

    2024年02月16日
    浏览(35)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包