机器学习 day27(反向传播)

这篇具有很好参考价值的文章主要介绍了机器学习 day27(反向传播)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1. 导数
机器学习 day27(反向传播),学习,机器学习

  • 函数在某点的导数为该点处的斜率,用height / width表示,可以看作若当w增加ε,J(w,b)增加k倍的ε,则k为该点的导数

2. 反向传播
机器学习 day27(反向传播),学习,机器学习

  • tensorflow中的计算图,由有向边和节点组成。从左向右为正向传播,神经网络模型使用正向传播来输出结果
  • 从右向左为反向传播,tensorflow使用反向传播来自动计算神经网络模型中的导数。
  • 反向传播求导数的过程类似链式求导法则,从右往左一层一层的求导,再将导数相乘就是最终的结果。例如:先求当d增加ε时,J增加多少,再求当a增加ε时,J增加多少…,最后把J增加的倍数k乘起来,就是最终的结果

机器学习 day27(反向传播),学习,机器学习

  • 反向传播是计算导数的有效方法,若要计算J对w的导数,就要知道J对d,d对a,a对c,c对w的导数,这个顺序刚好是从右到左的顺序
  • 反向传播求导数的步数大概是整个模型的节点数n与参数p之和。正向传播求导数的步数则是n与p之积
  • 综上:计算图执行神经网络模型输出成本函数J和导数的步骤为:逐步计算,并把它们分解为计算图的不同节点,使用从左到右(正向传播)来计算成本函数J,通过从右到左(反向传播)来计算所有导数

3. 大型神经网络的计算图
机器学习 day27(反向传播),学习,机器学习文章来源地址https://www.toymoban.com/news/detail-563539.html

  • 计算图由有向边和节点组成,节点表示数学运算,有向边表示节点间的数据交互。
  • 该神经网络模型求解成本函数的步骤可以用计算图表示
    机器学习 day27(反向传播),学习,机器学习
  • 正向传播计算导数的效率很低,对于每一个参数都要执行一次从左往右的正向传播,来计算该参数是如何引起J的变化的。若计算图由n个节点和p个参数,那么正向传播一共需要大约n * p个步骤,效率很低。
  • 反向传播计算导数的效率很高,只需要从右往左执行一次反向传播,再计算J对每一个参数的导数即可,那么反向传播只需要大约n + p个步骤,效率很高

到了这里,关于机器学习 day27(反向传播)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【机器学习】P18 反向传播(导数、微积分、链式法则、前向传播、后向传播流程、神经网络)

    反向传播(back propagation)是一种用于训练神经网络的算法,其作用是计算神经网络中每个参数对损失函数的影响,从而进行参数更新,使得神经网络的预测结果更加准确。 具体来说,反向传播算法首先通过 前向传播 计算神经网络的预测结果,并与实际结果进行比较,得到

    2024年02月04日
    浏览(64)
  • Pytorch深度学习笔记(五)反向传播算法

    目录 1.为什么要使用反向传播算法 2.二层神经网络 3.反向传播算法更新权值的过程 4.张量Tensor 推荐课程:04.反向传播_哔哩哔哩_bilibili 1.为什么要使用反向传播算法 简单模型可以使用解析式更新w 复杂模型,如图,输入矩阵为5*1矩阵,等一层权重矩阵H1为6*5矩阵,则需要30个解

    2023年04月22日
    浏览(36)
  • 深度学习 | 前馈神经网络与反向传播算法

    目录 一、Logistic函数 二、前馈神经网络(FNN) 三、反向传播算法(BP算法) ​四、基于前馈神经网络的手写体数字识别 Logistic函数是学习前馈神经网络的基础。所以在介绍前馈神经网络之前,我们首先来看一看Logistic函数。 Logistic函数定义为: Logistic函数可以看成是一个“挤

    2024年02月04日
    浏览(47)
  • 《动手学深度学习 Pytorch版》 8.7 通过时间反向传播

    本节主要探讨梯度相关问题,因此对模型及其表达式进行了简化,进行如下表示: h t = f ( x t , h t − 1 , w h ) o t = g ( h t , w o ) begin{align} h_t=f(x_t,h_{t-1},w_h)\\\\ o_t=g(h_t,w_o) end{align} h t ​ o t ​ ​ = f ( x t ​ , h t − 1 ​ , w h ​ ) = g ( h t ​ , w o ​ ) ​ ​ 参数字典: t t t 表示时间步

    2024年02月07日
    浏览(43)
  • 【深度学习基础】反向传播BP算法原理详解及实战演示(附源码)

    需要源码请点赞关注收藏后评论区留言私信~~~ 神经网络的设计灵感来源于生物学上的神经网络。如图所示,每个节点就是一个神经元,神经元与神经元之间的连线表示信息传递的方向。Layer 1表示输入层,Layer 2、Layer 3表示隐藏层,Layer 4表示输出层。我们希望通过神经网络,

    2024年01月21日
    浏览(40)
  • 【深度学习】4-2 误差反向传播法 - 简单层的实现(层的介绍)

    下面把构建神经网络的“层”实现为一个类。这里所说的“层”是神经网络中功能的单位。 下面先从一些简单的层开始介绍 层的实现中有两个共通的方法(接口) forward() 和 backward() 。 forward() 对应正向传播 backward() 对应反向传播 现在来实现乘法层。看下面代码 backward()将从上

    2024年02月09日
    浏览(38)
  • 计算机视觉:卷积核的参数可以通过反向传播学习到吗?

    在深度学习中,卷积神经网络(Convolutional Neural Networks, CNN)是一种常用的神经网络结构,其中卷积核是CNN的核心组件之一。卷积核是一个小矩阵,用于对输入数据进行卷积操作。卷积操作可以提取输入数据的特征,通过不同的卷积核可以提取不同的特征。   在前面课程中我

    2024年02月16日
    浏览(39)
  • 【Pytorch深度学习开发实践学习】B站刘二大人课程笔记整理lecture04反向传播

    lecture04反向传播 课程网址 Pytorch深度学习实践 部分课件内容: pytorch的机制是动态计算图, tensor里面既有data也有gradient

    2024年02月22日
    浏览(44)
  • pytorch 前向传播与反向传播代码+ fp16

    optim.zero_grad() : 将模型的梯度参数设置为0,即清空之前计算的梯度值,在训练模型过程中,每次模型反向传播完成后,梯度都会累加到之前的梯度值上,如果不清空,这些过时的梯度将会影响下一次迭代的结果。因此,使用 optim.zero_grad() 来清空梯度避免这种情况的发生。保证

    2024年02月05日
    浏览(44)
  • pytorch(三)反向传播

    前馈过程的目的是为了计算损失loss 反向传播的目的是为了更新权重w,这里权重的更新是使用随机梯度下降来更新的。 前馈过程 反馈过程 运行结果 在神经网路中,经常对线性的结果做一个非线性函数的变幻的展开,这就是激活函数。激活函数可以使得模型具有非线性。激活

    2024年01月24日
    浏览(38)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包