遗传算法超详细图解

这篇具有很好参考价值的文章主要介绍了遗传算法超详细图解。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

       遗传算法(Genetic Algorithm)顾名思义,是一种基于自然选择原理和自然遗传机制的启发式搜索算法。该算法通过模拟自然界中生物遗传进化的自然机制(选择、交叉和变异操作),将好的遗传基因(最优目标)不断遗传给子代,使得后代产生最优解的概率增加(后代还是会有一些差的结果)。它的整个算法流程如下:

遗传算法,算法

  1. 首先根据具体问题确定可行解域和编码方式,用数值串或字符串的形式表示可行解域中的每一个可行解;
  2. 构建适应度函数度量每一解,该函数为非负函数;
  3. 确定种群的大小、选择、交叉和变异的方式、交叉和变异的概率,判断终止条件(可以是某一阈值或者是指定进化的代数)。

在这个过程当中,交叉操作是优化的主要操作,而变异操作可以看成对种群的扰动。根据具体的问题我们构建适应度函数,并优化极值(可以是求最大值,也可以求最小值)。

名词解析

生物遗传概念在遗传算法中的对应关系如下:

生物遗传概念 遗传算法中的作用
适者生存 算法停止时,最优目标值的解大概率被找到
个体 每个可行解
染色体 对每个可行解的编码
基因 可行解中的每个组成部分
适应性 适应度函数的函数值
种群 可行解域,根据适应度函数选择的一组解
选择 保留适应度函数的函数值优的解
交叉 将两个可行解内的组分随机交叉,产生新解
变异 随机变异可行解中的某些组分

 文章来源地址https://www.toymoban.com/news/detail-563802.html

算法步骤

我们还是以一个简单的例子来讲解整个算法的流程。比如,我们需要寻找函数y=x12+x22+x33+x44[1,30]之间的最大值。我们很容易就知道,当x1=x2=x3=x4=30时,该函数能取到最大值。

首先我们构建一个叫Gene的类:

1

2

3

4

class Gene:

    def __init__(self, **data):

        self.__dict__.update(data)

        self.size = len(data['data'])  # length of gene

这个类只有一个初始化方法,该方法就是获得基因里面的内容和大小,在这个例子中,内容就是[1,30]之间的任意4个数字组成的列表。

接着构建一个叫GA的类,这个类包括算法的所有操作方法:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

class GA:

    def __init__(self, parameter):

        pass

    def evaluate(self, geneinfo):

        pass

    def selectBest(self, pop):

        pass

    def selection(self, individuals, k):

        pass

    def crossoperate(self, offspring):

        pass

    def mutation(self, crossoff, bound):

        pass

    def GA_main(self):

        pass

使用__init__()方法初始化参数,包括自变量可取的最大值,最小值,种群大小,交叉率,变异率和繁殖代数;使用evaluate()方法作为适应度函数评估该个体的函数值,在这里就是函数y的值;使用selectBest()方法挑选出当前代种群中的最好个体作为历史记录;使用selection()方法按照概率从上一代种群中选择个体,直至形成新的一代;使用crossoperate()方法实现交叉操作;使用mutation()方法实现变异操作;使用GA_main()方法实现整个算法的循环。

接下来我们会一一对其进行解析。

__init__()方法

__init__()方法的代码如下:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

def __init__(self, parameter):

    # parameter = [CXPB, MUTPB, NGEN, popsize, low, up]

    self.parameter = parameter

    low = self.parameter[4]

    up = self.parameter[5]

    self.bound = []

    self.bound.append(low)

    self.bound.append(up)

    pop = []

    for i in range(self.parameter[3]):

        geneinfo = []

        for pos in range(len(low)):

            geneinfo.append(random.randint(self.bound[0][pos], self.bound[1][pos]))  # initialise popluation

        fitness = self.evaluate(geneinfo)  # evaluate each chromosome

        pop.append({'Gene': Gene(data=geneinfo), 'fitness': fitness})  # store the chromosome and its fitness

    self.pop = pop

    self.bestindividual = self.selectBest(self.pop)  # store the best chromosome in the population

初始化方法接受传入的参数,包括最大值,最小值,种群大小,交叉率,变异率和繁殖代数。通过这些参数随机产生一个种群的列表pop作为首代种群,里面的每一条染色体是一个字典,该字典有两个内容,分别是包含基因的Gene类和适应度函数值fitness

evaluate()方法

在初始化方法中,要用到适应度函数计算函数值,它的定义如下:

1

2

3

4

5

6

7

def evaluate(self, geneinfo):

    x1 = geneinfo[0]

    x2 = geneinfo[1]

    x3 = geneinfo[2]

    x4 = geneinfo[3]

    y = x1**2 + x2**2 + x3**3 + x4**4

    return y

selectBest()方法

在初始化方法中,需要先将首代中最好的个体保留作为记录,它的定义如下:

1

2

3

def selectBest(self, pop):

    s_inds = sorted(pop, key=itemgetter("fitness"), reverse=True)          # from large to small, return a pop

    return s_inds[0]

对整个种群按照适应度函数从大到小排序,返回最大值的个体。

selection()方法

按照概率从上一代种群中选择个体,直至形成新的一代。我们需要适应度函数值大的个体被选择的概率大,可以使用轮盘赌选择法。该方法的步骤如下:

遗传算法,算法

它的代码实现如下:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

def selection(self, individuals, k):

    s_inds = sorted(individuals, key=itemgetter("fitness"),

                    reverse=True)  # sort the pop by the reference of fitness

    sum_fits = sum(ind['fitness'] for ind in individuals)  # sum up the fitness of the whole pop

    chosen = []

    for i in range(k):

        u = random.random() * sum_fits  # randomly produce a num in the range of [0, sum_fits], as threshold

        sum_ = 0

        for ind in s_inds:

            sum_ += ind['fitness']  # sum up the fitness

            if sum_ >= u:

                chosen.append(ind)

                break

    chosen = sorted(chosen, key=itemgetter("fitness"), reverse=False)

    return chosen

在这里我们对种群按照概率进行选择后代,适应度函数大的个体大概率被选择到下一代,最后我们对重新生成的新一代种群按照适应度从小到大进行排序,方便接下来的交叉操作。

crossoperate()方法

交叉是指将两个个体的基因片段在某一点或者某几点进行互换,常用的有单点交叉和双点交叉。它的过程如下:

遗传算法,算法

从图中可以看出,无论是单点交叉还是双点交叉都很大的改变了原来的基因序列,它是实现优化的重要手段。具体的实现代码如下:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

def crossoperate(self, offspring):

    dim = len(offspring[0]['Gene'].data)

    geninfo1 = offspring[0]['Gene'].data  # Gene's data of first offspring chosen from the selected pop

    geninfo2 = offspring[1]['Gene'].data  # Gene's data of second offspring chosen from the selected pop

    if dim == 1:

        pos1 = 1

        pos2 = 1

    else:

        pos1 = random.randrange(1, dim)  # select a position in the range from 0 to dim-1,

        pos2 = random.randrange(1, dim)

    newoff1 = Gene(data=[])  # offspring1 produced by cross operation

    newoff2 = Gene(data=[])  # offspring2 produced by cross operation

    temp1 = []

    temp2 = []

    for i in range(dim):

        if min(pos1, pos2) <= i < max(pos1, pos2):

            temp2.append(geninfo2[i])

            temp1.append(geninfo1[i])

        else:

            temp2.append(geninfo1[i])

            temp1.append(geninfo2[i])

    newoff1.data = temp1

    newoff2.data = temp2

    return newoff1, newoff2

上面的代码实现了双点交叉,其中为了防止只有一个基因的存在,我们使用一个判断语句。

mutation()方法

变异在遗传过程中属于小概率事件,但是在种群数量较小的情况下,只通过交叉操作并不能产生优秀的后代,此时变异就显得非常重要了。通过适当的变异甚至能够产生更优秀的后代。变异的方式有很多种,常规的变异有基本位变异和逆转变异。它的过程如下:

遗传算法,算法

在这里我们实现单点变异:

1

2

3

4

5

6

7

8

9

10

def mutation(self, crossoff, bound):

    dim = len(crossoff.data)

    if dim == 1:

        pos = 0

    else:

        pos = random.randrange(0, dim)  # chose a position in crossoff to perform mutation.

    crossoff.data[pos] = random.randint(bound[0][pos], bound[1][pos])

    return crossoff

同样为了防止只有一个基因的情况,使用判断语句。

GA_main()方法

遗传算法所有的轮子都写好后,我们接下来将它们整合到流程中。代码实现如下:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

def GA_main(self):

    popsize = self.parameter[3]

    print("Start of evolution")

    # Begin the evolution

    for g in range(NGEN):

        print("############### Generation {} ###############".format(g))

        # Apply selection based on their converted fitness

        selectpop = self.selection(self.pop, popsize)

        nextoff = []

        while len(nextoff) != popsize:

            # Apply crossover and mutation on the offspring

            # Select two individuals

            offspring = [selectpop.pop() for _ in range(2)]

            if random.random() < CXPB:  # cross two individuals with probability CXPB

                crossoff1, crossoff2 = self.crossoperate(offspring)

                if random.random() < MUTPB:  # mutate an individual with probability MUTPB

                    muteoff1 = self.mutation(crossoff1, self.bound)

                    muteoff2 = self.mutation(crossoff2, self.bound)

                    fit_muteoff1 = self.evaluate(muteoff1.data)  # Evaluate the individuals

                    fit_muteoff2 = self.evaluate(muteoff2.data)  # Evaluate the individuals

                    nextoff.append({'Gene': muteoff1, 'fitness': fit_muteoff1})

                    nextoff.append({'Gene': muteoff2, 'fitness': fit_muteoff2})

                else:

                    fit_crossoff1 = self.evaluate(crossoff1.data)  # Evaluate the individuals

                    fit_crossoff2 = self.evaluate(crossoff2.data)

                    nextoff.append({'Gene': crossoff1, 'fitness': fit_crossoff1})

                    nextoff.append({'Gene': crossoff2, 'fitness': fit_crossoff2})

            else:

                nextoff.extend(offspring)

        # The population is entirely replaced by the offspring

        self.pop = nextoff

        # Gather all the fitnesses in one list and print the stats

        fits = [ind['fitness'] for ind in self.pop]

        best_ind = self.selectBest(self.pop)

        if best_ind['fitness'] > self.bestindividual['fitness']:

            self.bestindividual = best_ind

        print("Best individual found is {}, {}".format(self.bestindividual['Gene'].data,

                                                       self.bestindividual['fitness']))

        print("  Max fitness of current pop: {}".format(max(fits)))

    print("------ End of (successful) evolution ------")

在这个流程当中需要注意的是,经过selection()方法产生的新种群selectpop是按照适应度从小到大排列的,通过列表的pop()方法能够优先选择适应度大的两个个体进行后续的交叉操作;因为是pop()两次,所以种群的大小必须是偶数个。

完整代码如下:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

import random

from operator import itemgetter

class Gene:

    """

    This is a class to represent individual(Gene) in GA algorithom

    each object of this class have two attribute: data, size

    """

    def __init__(self, **data):

        self.__dict__.update(data)

        self.size = len(data['data'])  # length of gene

class GA:

    """

    This is a class of GA algorithm.

    """

    def __init__(self, parameter):

        """

        Initialize the pop of GA algorithom and evaluate the pop by computing its' fitness value.

        The data structure of pop is composed of several individuals which has the form like that:

        {'Gene':a object of class Gene, 'fitness': 1.02(for example)}

        Representation of Gene is a list: [b s0 u0 sita0 s1 u1 sita1 s2 u2 sita2]

        """

        # parameter = [CXPB, MUTPB, NGEN, popsize, low, up]

        self.parameter = parameter

        low = self.parameter[4]

        up = self.parameter[5]

        self.bound = []

        self.bound.append(low)

        self.bound.append(up)

        pop = []

        for i in range(self.parameter[3]):

            geneinfo = []

            for pos in range(len(low)):

                geneinfo.append(random.randint(self.bound[0][pos], self.bound[1][pos]))  # initialise popluation

            fitness = self.evaluate(geneinfo)  # evaluate each chromosome

            pop.append({'Gene': Gene(data=geneinfo), 'fitness': fitness})  # store the chromosome and its fitness

        self.pop = pop

        self.bestindividual = self.selectBest(self.pop)  # store the best chromosome in the population

    def evaluate(self, geneinfo):

        """

        fitness function

        """

        x1 = geneinfo[0]

        x2 = geneinfo[1]

        x3 = geneinfo[2]

        x4 = geneinfo[3]

        y = x1**2 + x2**2 + x3**3 + x4**4

        return y

    def selectBest(self, pop):

        """

        select the best individual from pop

        """

        s_inds = sorted(pop, key=itemgetter("fitness"), reverse=True)          # from large to small, return a pop

        return s_inds[0]

    def selection(self, individuals, k):

        """

        select some good individuals from pop, note that good individuals have greater probability to be choosen

        for example: a fitness list like that:[5, 4, 3, 2, 1], sum is 15,

        [-----|----|---|--|-]

        012345|6789|101112|1314|15

        we randomly choose a value in [0, 15],

        it belongs to first scale with greatest probability

        """

        s_inds = sorted(individuals, key=itemgetter("fitness"),

                        reverse=True)  # sort the pop by the reference of fitness

        sum_fits = sum(ind['fitness'] for ind in individuals)  # sum up the fitness of the whole pop

        chosen = []

        for i in range(k):

            u = random.random() * sum_fits  # randomly produce a num in the range of [0, sum_fits], as threshold

            sum_ = 0

            for ind in s_inds:

                sum_ += ind['fitness']  # sum up the fitness

                if sum_ >= u:

                    # when the sum of fitness is bigger than u, choose the one, which means u is in the range of

                    # [sum(1,2,...,n-1),sum(1,2,...,n)] and is time to choose the one ,namely n-th individual in the pop

                    chosen.append(ind)

                    break

        # from small to large, due to list.pop() method get the last element

        chosen = sorted(chosen, key=itemgetter("fitness"), reverse=False)

        return chosen

    def crossoperate(self, offspring):

        """

        cross operation

        here we use two points crossoperate

        for example: gene1: [5, 2, 4, 7], gene2: [3, 6, 9, 2], if pos1=1, pos2=2

        5 | 2 | 4  7

        3 | 6 | 9  2

        =

        3 | 2 | 9  2

        5 | 6 | 4  7

        """

        dim = len(offspring[0]['Gene'].data)

        geninfo1 = offspring[0]['Gene'].data  # Gene's data of first offspring chosen from the selected pop

        geninfo2 = offspring[1]['Gene'].data  # Gene's data of second offspring chosen from the selected pop

        if dim == 1:

            pos1 = 1

            pos2 = 1

        else:

            pos1 = random.randrange(1, dim)  # select a position in the range from 0 to dim-1,

            pos2 = random.randrange(1, dim)

        newoff1 = Gene(data=[])  # offspring1 produced by cross operation

        newoff2 = Gene(data=[])  # offspring2 produced by cross operation

        temp1 = []

        temp2 = []

        for i in range(dim):

            if min(pos1, pos2) <= i < max(pos1, pos2):

                temp2.append(geninfo2[i])

                temp1.append(geninfo1[i])

            else:

                temp2.append(geninfo1[i])

                temp1.append(geninfo2[i])

        newoff1.data = temp1

        newoff2.data = temp2

        return newoff1, newoff2

    def mutation(self, crossoff, bound):

        """

        mutation operation

        """

        dim = len(crossoff.data)

        if dim == 1:

            pos = 0

        else:

            pos = random.randrange(0, dim)  # chose a position in crossoff to perform mutation.

        crossoff.data[pos] = random.randint(bound[0][pos], bound[1][pos])

        return crossoff

    def GA_main(self):

        """

        main frame work of GA

        """

        popsize = self.parameter[3]

        print("Start of evolution")

        # Begin the evolution

        for g in range(NGEN):

            print("############### Generation {} ###############".format(g))

            # Apply selection based on their converted fitness

            selectpop = self.selection(self.pop, popsize)

            nextoff = []

            while len(nextoff) != popsize:

                # Apply crossover and mutation on the offspring

                # Select two individuals

                offspring = [selectpop.pop() for _ in range(2)]

                if random.random() < CXPB:  # cross two individuals with probability CXPB

                    crossoff1, crossoff2 = self.crossoperate(offspring)

                    if random.random() < MUTPB:  # mutate an individual with probability MUTPB

                        muteoff1 = self.mutation(crossoff1, self.bound)

                        muteoff2 = self.mutation(crossoff2, self.bound)

                        fit_muteoff1 = self.evaluate(muteoff1.data)  # Evaluate the individuals

                        fit_muteoff2 = self.evaluate(muteoff2.data)  # Evaluate the individua

nextoff.append({'Gene': muteoff1, 'fitness': fit_muteoff1})

                        nextoff.append({'Gene': muteoff2, 'fitness': fit_muteoff2})

                    else:

                        fit_crossoff1 = self.evaluate(crossoff1.data)  # Evaluate the individuals

                        fit_crossoff2 = self.evaluate(crossoff2.data)

                        nextoff.append({'Gene': crossoff1, 'fitness': fit_crossoff1})

                        nextoff.append({'Gene': crossoff2, 'fitness': fit_crossoff2})

                else:

                    nextoff.extend(offspring)

            # The population is entirely replaced by the offspring

            self.pop = nextoff

            # Gather all the fitnesses in one list and print the stats

            fits = [ind['fitness'] for ind in self.pop]

            best_ind = self.selectBest(self.pop)

            if best_ind['fitness'] > self.bestindividual['fitness']:

                self.bestindividual = best_ind

            print("Best individual found is {}, {}".format(self.bestindividual['Gene'].data,

                                                           self.bestindividual['fitness']))

            print("  Max fitness of current pop: {}".format(max(fits)))

遗传算法,算法

        print("------ End of (successful) evolution ------")

if __name__ == "__main__":

    CXPB, MUTPB, NGEN, popsize = 0.8, 0.1, 1000, 100  # popsize must be even number

    up = [30, 30, 30, 30]  # upper range for variables

    low = [1, 1, 1, 1]  # lower range for variables

    parameter = [CXPB, MUTPB, NGEN, popsize, low, up]

    run = GA(parameter)

    run.GA_main()

if __name__ == "__main__":语句后面,我们设定所有的参数。在这里交叉概率CXPB为0.8,变异概率MUTPB为0.1,总共跑NGEN=1000代,每代的种群大小为100。

得到结果如下:

事实上按照目前的参数,在第342代的时候已经找到最优解。如果使用枚举法需要30*30*30*30=810000次才能寻找到最优解,通过遗传算法只计算了34200次,大大缩短最优解的搜索空间。

参考:Python手把手构建遗传算法(GA)实现最优化搜索 - FINTHON

 

到了这里,关于遗传算法超详细图解的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • (九)Java算法:快速排序(详细图解)

    1.1、概念    快速排序 :用数组的第一个数作为基准数据,然后将所有比它小的数都放到它左边,所有比它大的数都放到它右边,这个过程称为一趟快速排序。值得注意的是,快速排序不是一种稳定的排序算法,也就是说,多个相同的值的相对位置也许会在算法结束时产生

    2024年02月10日
    浏览(51)
  • 基于遗传算法优化BP神经网络的滑坡稳定性预测,BP神经网络的详细原理

    目录 BP神经网络的原理 BP神经网络的定义 BP神经网络的基本结构 BP神经网络的神经元 BP神经网络的激活函数, BP神经网络的传递函数 遗传算法原理 遗传算法主要参数 遗传算法流程图 完整代码包含数据下载链接: 遗传算法优化BP神经网络的MATALB代码,遗传算法优化BP神经网络

    2024年02月05日
    浏览(55)
  • 排序算法进阶——归并排序【详细图解,递归和非递归】

    在了解归并排序之前让我们先了解一下归并这一算法吧! 归并算法一般应用于合并两个已经有序的序列,使合并后的序列也有序,是一个时间复杂度为O(N)的算法,不过一般要借助两个要排序的序列的元素个数个额外的空间。 一一一一一一一一一一一一一一一一一一一一一

    2024年01月24日
    浏览(42)
  • 基于遗传算法改进的支持向量机多分类仿真,基于GA-SVM的多分类预测,支持相机的详细原理

    背影 支持向量机SVM的详细原理 SVM的定义 SVM理论 遗传算法的原理及步骤 SVM应用实例,基于遗传算法优化SVM的多分类预测 完整代码包括SVM工具箱:https://download.csdn.net/download/abc991835105/88175549 代码 结果分析 展望 多分类预测对现代智能化社会拥有重要意义,本文用遗传算法改进

    2024年02月13日
    浏览(36)
  • ChatGPT 使用 强化学习:Proximal Policy Optimization算法(详细图解)

    ChatGPT 使用 强化学习:Proximal Policy Optimization算法 强化学习中的PPO(Proximal Policy Optimization)算法是一种高效的策略优化方法,它对于许多任务来说具有很好的性能。PPO的核心思想是限制策略更新的幅度,以实现更稳定的训练过程。接下来,我将分步骤向您介绍PPO算法。 首先,

    2023年04月10日
    浏览(31)
  • 数据结构与算法 —— 最短路径Dijkstra算法(迪杰斯特拉)详细图解以及python实现

    目录 前言 1. 介绍 2. 加权图 2.1 概念 3. 最短路径 -- Dijkstra 算法 3.1 历史 3.2 Dijkstra 算法的基本思路 3.3 Dijkstra 算法图解 4.  python中dijkstra算法的实现 5. 总结  前两章我们讲到了关于图的基本知识,和广度/深度优先搜索。 本章,我们将介绍 加权图 和 最短路径 的相关知识。 最

    2024年02月12日
    浏览(51)
  • 电子凸轮应用追剪算法详细图解(附PLC完整源代码)

    谈到运动控制就离不开编码器,有关编码器测速,测距的相关内容,大家可以查看专栏的其它文章,和飞剪控制息息相关的编码器测速,请参看下面的博客,链接如下: 如何通过编码器信号计算输送线/输送带线速度(飞剪、追剪算法基础)_RXXW_Dor的博客-CSDN博客 不同品牌P

    2024年02月16日
    浏览(65)
  • (详细图解)KMP算法(C语言)------可算领悟了这个由三位前辈研究的算法

    目录   前言 一、简介KMP算法 二、朴素的模式匹配算法 第一种朴素的模式匹配算法的写法 第二种朴素的模式匹配算法的写法 一个例子 第三总结 三、KMP算法 1、字符串的前缀、后缀和部分匹配值 2、KMP算法的原理 算法改进 1、主串、子串从数组索引为 1 处开始存储字符 2、主

    2024年03月12日
    浏览(63)
  • 【算法与数据结构】归并排序的代码实现(详细图解)以及master公式的讲解

    目录 1、归并排序  1.1、算法描述  1.2、图解说明 2、代码实现  3、master公式 3.1、公式以及结论 3.2、适用于某些特殊的递归 3.3、计算归并排序的时间复杂度 归并排序是建立在归并操作上的一种有效的排序算法。该算法是采用 递归 或者说是 分治法 (Divide and Conquer)的一个非

    2024年02月08日
    浏览(56)
  • KMP算法——通俗易懂讲好KMP算法:实例图解分析+详细代码注解 --》你的所有疑惑在本文都能得到解答

    KMP 是一个 解决模式串在文本串是否出现过 ,如果出现过,最早出现的位置的经典算法。 Knuth-Morris-Pratt 字符串查找算法,简称为 “KMP 算法”,常用于 在一个文本串 S 内查找一个模式串 P 的出现位置 ,这个算法由 Donald Knuth 、 Vaughan Pratt 、 James H. Morris 三人于 1977 年联合发表

    2024年02月07日
    浏览(46)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包