分布式搜索引擎
1.初识elasticsearch
1.1.了解ES
1.1.1.elasticsearch的作用
elasticsearch是一款非常强大的开源搜索引擎,具备非常多强大功能,可以帮助我们从海量数据中快速找到需要的内容
例如:
在GitHub搜索代码
在电商网站搜索商品
在百度搜索答案
在打车软件搜索附近的车
1.1.2 ELK技术栈
elasticsearch结合kibana、Logstash、Beats,也就是elastic stack(ELK)。被广泛应用在日志数据分析、实时监控等领域:
而elasticsearch是elastic stack的核心,负责存储、搜索、分析数据。
1.1.3 elasticsearch和lucene
elasticsearch底层是基于lucene来实现的。
Lucene是一个Java语言的搜索引擎类库,是Apache公司的顶级项目,由DougCutting于1999年研发。官网地址
- Lucene的优势
- 易扩展
- 高性能(基于倒排索引)
- Lucene的缺点
- 只限于Java语言开发
- 学习曲线陡峭
- 不支持水平扩展
elasticsearch的发展历史:
- 2004年Shay Banon基于Lucene开发了Compass
- 2010年Shay Banon 重写了Compass,取名为Elasticsearch。
官网地址,相比于Lucene,elasticsearch具备以下优势:
- 支持分布式,可水平扩展
- 提供Restful接口,可以被任何语言调用
1.1.4 为什么不是其他搜索技术?
目前比较知名的搜索引擎技术排名:
虽然在早期,Apache Solr是最主要的搜索引擎技术,但随着发展elasticsearch已经渐渐超越了Solr,独占鳌头:
1.1.5 总结
什么是elasticsearch?
- 一个开源的分布式搜索引擎,可以用来实现搜索、日志统计、分析、系统监控等功能
什么是elastic stack(ELK)?
- 是以elasticsearch为核心的技术栈,包括beats、Logstash、kibana、elasticsearch
什么是Lucene?
- 是Apache的开源搜索引擎类库,提供了搜索引擎的核心API
1.2 倒排索引
倒排索引的概念是基于MySQL这样的正向索引而言的。
1.2.1 正向索引
那么什么是正向索引呢?例如给下表(tb_goods)中的id创建索引:
如果是根据id查询,那么直接走索引,查询速度非常快。
但如果是基于title做模糊查询,只能是逐行扫描数据,流程如下:
1)用户搜索数据,条件是title符合
"%手机%"
2)逐行获取数据,比如id为1的数据
3)判断数据中的title是否符合用户搜索条件
4)如果符合则放入结果集,不符合则丢弃。回到步骤1
逐行扫描,也就是全表扫描,随着数据量增加,其查询效率也会越来越低。当数据量达到数百万时,就是一场灾难。
1.2.2 倒排索引
倒排索引中有两个非常重要的概念:
- 文档(
Document
):用来搜索的数据,其中的每一条数据就是一个文档。例如一个网页、一个商品信息- 词条(
Term
):对文档数据或用户搜索数据,利用某种算法分词,得到的具备含义的词语就是词条。例如:我是中国人,就可以分为:我、是、中国人、中国、国人这样的几个词条创建倒排索引是对正向索引的一种特殊处理,流程如下:
- 将每一个文档的数据利用算法分词,得到一个个词条
- 创建表,每行数据包括词条、词条所在文档id、位置等信息
- 因为词条唯一性,可以给词条创建索引,例如hash表结构索引
如图:
倒排索引的搜索流程如下(以搜索"华为手机"为例):
1)用户输入条件
"华为手机"
进行搜索。2)对用户输入内容分词,得到词条:
华为
、手机
。3)拿着词条在倒排索引中查找,可以得到包含词条的文档id:1、2、3。
4)拿着文档id到正向索引中查找具体文档。
如图:
虽然要先查询倒排索引,再查询倒排索引,但是无论是词条、还是文档id都建立了索引,查询速度非常快!无需全表扫描。
1.2.3 正向和倒排
那么为什么一个叫做正向索引,一个叫做倒排索引呢?
正向索引是最传统的,根据id索引的方式。但根据词条查询时,必须先逐条获取每个文档,然后判断文档中是否包含所需要的词条,是根据文档找词条的过程。
而倒排索引则相反,是先找到用户要搜索的词条,根据词条得到保护词条的文档的id,然后根据id获取文档。是根据词条找文档的过程。
是不是恰好反过来了?
那么两者方式的优缺点是什么呢?
正向索引:
- 优点:
- 可以给多个字段创建索引
- 根据索引字段搜索、排序速度非常快
- 缺点:
- 根据非索引字段,或者索引字段中的部分词条查找时,只能全表扫描。
倒排索引:
- 优点:
- 根据词条搜索、模糊搜索时,速度非常快
- 缺点:
- 只能给词条创建索引,而不是字段
- 无法根据字段做排序
1.3 es的一些概念
elasticsearch中有很多独有的概念,与mysql中略有差别,但也有相似之处。
1.3.1 文档和字段
elasticsearch是面向**文档(Document)**存储的,可以是数据库中的一条商品数据,一个订单信息。文档数据会被序列化为json格式后存储在elasticsearch中:
而Json文档中往往包含很多的字段(Field),类似于数据库中的列。
1.3.2 索引和映射
索引(Index),就是相同类型的文档的集合。
例如:
- 所有用户文档,就可以组织在一起,称为用户的索引;
- 所有商品的文档,可以组织在一起,称为商品的索引;
- 所有订单的文档,可以组织在一起,称为订单的索引;
因此,我们可以把索引当做是数据库中的表。
数据库的表会有约束信息,用来定义表的结构、字段的名称、类型等信息。因此,索引库中就有映射(mapping),是索引中文档的字段约束信息,类似表的结构约束。
1.3.3 mysql与elasticsearch
我们统一的把mysql与elasticsearch的概念做一下对比:
MySQL Elasticsearch 说明 Table Index 索引(index),就是文档的集合,类似数据库的表(table) Row Document 文档(Document),就是一条条的数据,类似数据库中的行(Row),文档都是JSON格式 Column Field 字段(Field),就是JSON文档中的字段,类似数据库中的列(Column) Schema Mapping Mapping(映射)是索引中文档的约束,例如字段类型约束。类似数据库的表结构(Schema) SQL DSL DSL是elasticsearch提供的JSON风格的请求语句,用来操作elasticsearch,实现CRUD 是不是说,我们学习了elasticsearch就不再需要mysql了呢?
并不是如此,两者各自有自己的擅长支出:
Mysql:擅长事务类型操作,可以确保数据的安全和一致性
Elasticsearch:擅长海量数据的搜索、分析、计算
因此在企业中,往往是两者结合使用:
- 对安全性要求较高的写操作,使用mysql实现
- 对查询性能要求较高的搜索需求,使用elasticsearch实现
- 两者再基于某种方式,实现数据的同步,保证一致性
1.4 安装es、kibana
1.4.1 安装es
1.4.1.1 创建网络
因为我们还需要部署kibana容器,因此需要让es和kibana容器互联。这里先创建一个网络:
docker network create es-net
1.4.1.2 加载镜像
这里采用elasticsearch的7.12.1版本的镜像,这个镜像体积非常大,接近1G。
可以通过上传tar包,然后运行命令加载
# 导入数据 docker load -i es.tar
或者通过pull拉取
docker pull elasticsearch7.12.1
1.4.1.3 运行
运行docker命令,部署单点es:
docker run -d \ --name es \ -e "ES_JAVA_OPTS=-Xms512m -Xmx512m" \ -e "discovery.type=single-node" \ -v es-data:/usr/share/elasticsearch/data \ -v es-plugins:/usr/share/elasticsearch/plugins \ --privileged \ --network es-net \ -p 9200:9200 \ -p 9300:9300 \ elasticsearch:7.12.1
命令解释:
-e "cluster.name=es-docker-cluster"
:设置集群名称-e "http.host=0.0.0.0"
:监听的地址,可以外网访问-e "ES_JAVA_OPTS=-Xms512m -Xmx512m"
:内存大小-e "discovery.type=single-node"
:非集群模式-v es-data:/usr/share/elasticsearch/data
:挂载逻辑卷,绑定es的数据目录-v es-logs:/usr/share/elasticsearch/logs
:挂载逻辑卷,绑定es的日志目录-v es-plugins:/usr/share/elasticsearch/plugins
:挂载逻辑卷,绑定es的插件目录--privileged
:授予逻辑卷访问权--network es-net
:加入一个名为es-net的网络中-p 9200:9200
:端口映射配置在浏览器中输入:http://139.155.97.82:9200 即可看到elasticsearch的响应结果:
1.4.2 安装kibana
kibana可以给我们提供一个elasticsearch的可视化界面,便于我们学习。
运行docker命令,部署kibana
docker run -d \ --name kibana \ -e ELASTICSEARCH_HOSTS=http://es:9200 \ --network=es-net \ -p 5601:5601 \ kibana:7.12.1 #或者 docker run -d \ --name kibana \ -e ELASTICSEARCH_HOSTS=http://139.155.97.82:9200 \ --network=es-net \ -p 5601:5601 \ kibana:7.12.1
--network es-net
:加入一个名为es-net的网络中,与elasticsearch在同一个网络中-e ELASTICSEARCH_HOSTS=http://es:9200"
:设置elasticsearch的地址,因为kibana已经与elasticsearch在一个网络,因此可以用容器名直接访问elasticsearch-p 5601:5601
:端口映射配置kibana启动一般比较慢,需要多等待一会,可以通过命令:
docker logs -f kibana
查看运行日志,当查看到下面的日志,说明成功:
此时,在浏览器输入地址访问:http://139.155.97.82:5601,即可看到结果
1.4.3 DevTools
kibana中提供了一个DevTools界面:
这个界面中可以编写DSL来操作elasticsearch。并且对DSL语句有自动补全功能。
1.4.3 安装IK分词器
1.4.3.1 在线安装ik插件(较慢)
# 进入容器内部 docker exec -it elasticsearch /bin/bash # 在线下载并安装 ./bin/elasticsearch-plugin install https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v7.12.1/elasticsearch-analysis-ik-7.12.1.zip #退出 exit #重启容器 docker restart elasticsearch
1.4.3.2 离线安装ik插件(推荐)
1)查看数据卷目录
安装插件需要知道elasticsearch的plugins目录位置,而我们用了数据卷挂载,因此需要查看elasticsearch的数据卷目录,通过下面命令查看:
docker volume inspect es-plugins
显示结果:
[ { "CreatedAt": "2022-05-06T10:06:34+08:00", "Driver": "local", "Labels": null, "Mountpoint": "/var/lib/docker/volumes/es-plugins/_data", "Name": "es-plugins", "Options": null, "Scope": "local" } ]
说明plugins目录被挂载到了:
/var/lib/docker/volumes/es-plugins/_data
这个目录中。2)解压缩分词器安装包
3)上传到es容器的插件数据卷中
也就是
/var/lib/docker/volumes/es-plugins/_data
:4)重启容器
# 4、重启容器 docker restart es
# 查看es日志 docker logs -f es
5)测试
IK分词器包含两种模式:
ik_smart
:最少切分
ik_max_word
:最细切分GET /_analyze { "analyzer": "ik_max_word", "text": "人有生老三千疾,唯有相思不可医。" }
{ "tokens" : [ { "token" : "人", "start_offset" : 0, "end_offset" : 1, "type" : "CN_CHAR", "position" : 0 }, { "token" : "有生", "start_offset" : 1, "end_offset" : 3, "type" : "CN_WORD", "position" : 1 }, { "token" : "老三", "start_offset" : 3, "end_offset" : 5, "type" : "CN_WORD", "position" : 2 }, { "token" : "三千", "start_offset" : 4, "end_offset" : 6, "type" : "TYPE_CNUM", "position" : 3 }, { "token" : "疾", "start_offset" : 6, "end_offset" : 7, "type" : "CN_CHAR", "position" : 4 }, { "token" : "唯有", "start_offset" : 8, "end_offset" : 10, "type" : "CN_WORD", "position" : 5 }, { "token" : "相思", "start_offset" : 10, "end_offset" : 12, "type" : "CN_WORD", "position" : 6 }, { "token" : "不可", "start_offset" : 12, "end_offset" : 14, "type" : "CN_WORD", "position" : 7 }, { "token" : "医", "start_offset" : 14, "end_offset" : 15, "type" : "CN_CHAR", "position" : 8 } ] }
1.4.3.3 扩展词词典
随着互联网的发展,“造词运动”也越发的频繁。出现了很多新的词语,在原有的词汇列表中并不存在。比如:“奥力给”,“人有生老三千疾” 等。
所以我们的词汇也需要不断的更新,IK分词器提供了扩展词汇的功能。
1)打开IK分词器config目录:
2)在IKAnalyzer.cfg.xml配置文件内容添加:
<?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd"> <properties> <comment>IK Analyzer 扩展配置</comment> <!--用户可以在这里配置自己的扩展字典 *** 添加扩展词典--> <entry key="ext_dict">ext.dic</entry> </properties>
3)新建一个 ext.dic,可以参考config目录下复制一个配置文件进行修改
人有生老三千疾 奥力给
4)重启elasticsearch
docker restart es # 查看 日志 docker logs -f elasticsearch
日志中已经成功加载ext.dic配置文件
5)测试效果:
GET /_analyze { "analyzer": "ik_max_word", "text": "人有生老三千疾,唯有相思不可医。奥里给!" }
{ "tokens" : [ { "token" : "人有生老三千疾", "start_offset" : 0, "end_offset" : 7, "type" : "CN_WORD", "position" : 0 }, { "token" : "有生", "start_offset" : 1, "end_offset" : 3, "type" : "CN_WORD", "position" : 1 }, { "token" : "老三", "start_offset" : 3, "end_offset" : 5, "type" : "CN_WORD", "position" : 2 }, { "token" : "三千", "start_offset" : 4, "end_offset" : 6, "type" : "TYPE_CNUM", "position" : 3 }, { "token" : "疾", "start_offset" : 6, "end_offset" : 7, "type" : "CN_CHAR", "position" : 4 }, { "token" : "唯有", "start_offset" : 8, "end_offset" : 10, "type" : "CN_WORD", "position" : 5 }, { "token" : "相思", "start_offset" : 10, "end_offset" : 12, "type" : "CN_WORD", "position" : 6 }, { "token" : "不可", "start_offset" : 12, "end_offset" : 14, "type" : "CN_WORD", "position" : 7 }, { "token" : "医", "start_offset" : 14, "end_offset" : 15, "type" : "CN_CHAR", "position" : 8 }, { "token" : "奥里给", "start_offset" : 16, "end_offset" : 19, "type" : "CN_WORD", "position" : 9 } ] }
注意当前文件的编码必须是 UTF-8 格式,严禁使用Windows记事本编辑
1.4.3.4 停用词词典
在互联网项目中,在网络间传输的速度很快,所以很多语言是不允许在网络上传递的,如:关于宗教、政治等敏感词语,那么我们在搜索时也应该忽略当前词汇。
IK分词器也提供了强大的停用词功能,让我们在索引时就直接忽略当前的停用词汇表中的内容。
1)IKAnalyzer.cfg.xml配置文件内容添加:
<?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd"> <properties> <comment>IK Analyzer 扩展配置</comment> <!--用户可以在这里配置自己的扩展字典--> <entry key="ext_dict">ext.dic</entry> <!--用户可以在这里配置自己的扩展停止词字典 *** 添加停用词词典--> <entry key="ext_stopwords">stopword.dic</entry> </properties>
3)在 stopword.dic 添加停用词
牛逼 我靠 靠 逼
4)重启elasticsearch
# 重启服务 docker restart elasticsearch docker restart kibana # 查看 日志 docker logs -f elasticsearch
日志中已经成功加载stopword.dic配置文件
5)测试效果:
GET /_analyze { "analyzer": "ik_max_word", "text": "我靠!这也太牛逼了!" }
{ "tokens" : [ { "token" : "我", "start_offset" : 0, "end_offset" : 1, "type" : "CN_CHAR", "position" : 0 }, { "token" : "这也", "start_offset" : 3, "end_offset" : 5, "type" : "CN_WORD", "position" : 1 }, { "token" : "太", "start_offset" : 5, "end_offset" : 6, "type" : "CN_CHAR", "position" : 2 }, { "token" : "牛", "start_offset" : 6, "end_offset" : 7, "type" : "CN_CHAR", "position" : 3 }, { "token" : "逼了", "start_offset" : 7, "end_offset" : 9, "type" : "CN_WORD", "position" : 4 } ] }
注意当前文件的编码必须是 UTF-8 格式,严禁使用Windows记事本编辑
1.4.4 总结
分词器的作用是什么?
- 创建倒排索引时对文档分词
- 用户搜索时,对输入的内容分词
IK分词器有几种模式?
- ik_smart:智能切分,粗粒度
- ik_max_word:最细切分,细粒度
IK分词器如何拓展词条?如何停用词条?
- 利用config目录的IkAnalyzer.cfg.xml文件添加拓展词典和停用词典
- 在词典中添加拓展词条或者停用词条
2. 索引库操作
索引库就类似数据库表,mapping映射就类似表的结构。
要向es中存储数据,必须先创建“库”和“表”。
2.1 mapping映射属性
mapping是对索引库中文档的约束,常见的mapping属性包括:
- type:字段数据类型,常见的简单类型有:
- 字符串:text(可分词的文本)、keyword(精确值,例如:品牌、国家、ip地址)
- 数值:long、integer、short、byte、double、float、
- 布尔:boolean
- 日期:date
- 对象:object
- index:是否创建索引,默认为true
- analyzer:使用哪种分词器
- properties:该字段的子字段
例如下面的json文档:
{ "age": 21, "weight": 52.1, "isMarried": false, "info": "Java学年成绩", "email": "zy@163.com", "score": [99.1, 99.5, 98.9], "name": { "firstName": "赵", "lastName": "云" } }
对应的每个字段映射(mapping):
- age:类型为 integer;参与搜索,因此需要index为true;无需分词器
- weight:类型为float;参与搜索,因此需要index为true;无需分词器
- isMarried:类型为boolean;参与搜索,因此需要index为true;无需分词器
- info:类型为字符串,需要分词,因此是text;参与搜索,因此需要index为true;分词器可以用ik_smart
- email:类型为字符串,但是不需要分词,因此是keyword;不参与搜索,因此需要index为false;无需分词器
- score:虽然是数组,但是我们只看元素的类型,类型为float;参与搜索,因此需要index为true;无需分词器
- name:类型为object,需要定义多个子属性
- name.firstName;类型为字符串,但是不需要分词,因此是keyword;参与搜索,因此需要index为true;无需分词器
- name.lastName;类型为字符串,但是不需要分词,因此是keyword;参与搜索,因此需要index为true;无需分词器
2.2 索引库的CRUD
这里我们统一使用Kibana编写DSL的方式来演示。
2.2.1 创建索引库和映射
基本语法:
- 请求方式:PUT
- 请求路径:/索引库名,可以自定义
- 请求参数:mapping映射
格式:
PUT /索引库名称 { "mappings": { "properties": { "字段名":{ "type": "text", "analyzer": "ik_smart" }, "字段名2":{ "type": "keyword", "index": "false" }, "字段名3":{ "properties": { "子字段": { "type": "keyword" } } }, // ...略 } } }
示例:
PUT /yishooo { "mappings": { "properties": { "info":{ "type": "text", "analyzer": "ik_smart" }, "email":{ "type": "keyword", "index": "falsae" }, "name":{ "properties": { "firstName": { "type": "keyword" } } }, // ... 略 } } }
2.2.2 查询索引库
基本语法:
请求方式:GET
请求路径:/索引库名
请求参数:无
格式:
GET /索引库名
2.2.3 修改索引库
倒排索引结构虽然不复杂,但是一旦数据结构改变(比如改变了分词器),就需要重新创建倒排索引,这简直是灾难。因此索引库一旦创建,无法修改mapping。
虽然无法修改mapping中已有的字段,但是却允许添加新的字段到mapping中,因为不会对倒排索引产生影响。
语法说明:
PUT /索引库名/_mapping { "properties": { "新字段名":{ "type": "integer" } } }
示例:
2.2.4 删除索引库
语法:
请求方式:DELETE
请求路径:/索引库名
请求参数:无
格式:
DELETE /索引库名
在kibana中测试:
2.2.5 总结
索引库操作有哪些?
- 创建索引库:PUT /索引库名
- 查询索引库:GET /索引库名
- 删除索引库:DELETE /索引库名
- 添加字段:PUT /索引库名/_mapping
3. 文档操作
3.1 新增文档
语法:
POST /索引库名/_doc/文档id { "字段1": "值1", "字段2": "值2", "字段3": { "子属性1": "值3", "子属性2": "值4" }, // ... }
示例:
POST /yishooo/_doc/1 { "info": "金牌Java讲师", "email": "zy@163.com", "name": { "firstName": "赵", "lastName": "云" } }
响应:
3.2 查询文档
根据rest风格,新增是post,查询应该是get,不过查询一般都需要条件,这里我们把文档id带上。
语法:
GET /{索引库名称}/_doc/{id}
通过kibana查看数据:
3.3 删除文档
删除使用DELETE请求,同样,需要根据id进行删除:
语法:
DELETE /{索引库名}/_doc/id值
示例:
#删除id为1的文档数据 DELETE /yishooo/_doc/1
3.4 修改文档
修改有两种方式:
- 全量修改:直接覆盖原来的文档
- 增量修改:修改文档中的部分字段
3.4.1 全量修改
全量修改是覆盖原来的文档,其本质是:
- 根据指定的id删除文档
- 新增一个相同id的文档
注意:如果根据id删除时,id不存在,第二步的新增也会执行,也就从修改变成了新增操作了。
语法:
PUT /{索引库名}/_doc/文档id { "字段1": "值1", "字段2": "值2", // ... 略 }
示例:
#全量修改数据,会删除旧文档,添加新文档 PUT /yishooo/_doc/1 { "email": "yishooo@163.com" }
3.4.2 增量修改
增量修改是只修改指定id匹配的文档中的部分字段。
语法:
POST /{索引库名}/_update/文档id { "doc": { "字段名": "新的值", } }
示例:
#增量修改,修改指定字段值 POST /yishooo/_update/1 { "doc": { "email": "yishooo@163.com" } }
3.5 总结
文档操作有哪些?
- 创建文档:POST /{索引库名}/_doc/文档id { json文档 }
- 查询文档:GET /{索引库名}/_doc/文档id
- 删除文档:DELETE /{索引库名}/_doc/文档id
- 修改文档:
- 全量修改:PUT /{索引库名}/_doc/文档id { json文档 }
- 增量修改:POST /{索引库名}/_update/文档id { “doc”: {字段}}
4. RestAPI
ES官方提供了各种不同语言的客户端,用来操作ES。这些客户端的本质就是组装DSL语句,通过http请求发送给ES。官方文档地址:https://www.elastic.co/guide/en/elasticsearch/client/index.html
其中的Java Rest Client又包括两种:
- Java Low Level Rest Client
- Java High Level Rest Client
4.1 导入Demo工程
4.1.1 导入数据库数据
创建名为hotel的数据库,创建tb_hotel表,数据结构如下:
CREATE TABLE `tb_hotel` ( `id` bigint(20) NOT NULL COMMENT '酒店id', `name` varchar(255) NOT NULL COMMENT '酒店名称;例:7天酒店', `address` varchar(255) NOT NULL COMMENT '酒店地址;例:航头路', `price` int(10) NOT NULL COMMENT '酒店价格;例:329', `score` int(2) NOT NULL COMMENT '酒店评分;例:45,就是4.5分', `brand` varchar(32) NOT NULL COMMENT '酒店品牌;例:如家', `city` varchar(32) NOT NULL COMMENT '所在城市;例:上海', `star_name` varchar(16) DEFAULT NULL COMMENT '酒店星级,从低到高分别是:1星到5星,1钻到5钻', `business` varchar(255) DEFAULT NULL COMMENT '商圈;例:虹桥', `latitude` varchar(32) NOT NULL COMMENT '纬度;例:31.2497', `longitude` varchar(32) NOT NULL COMMENT '经度;例:120.3925', `pic` varchar(255) DEFAULT NULL COMMENT '酒店图片;例:/img/1.jpg', PRIMARY KEY (`id`) ) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;
4.1.2 导入项目
项目结构如图:
4.1.3 mapping映射分析
创建索引库,最关键的是mapping映射,而mapping映射要考虑的信息包括:
- 字段名
- 字段数据类型
- 是否参与搜索
- 是否需要分词
- 如果分词,分词器是什么?
其中:
- 字段名、字段数据类型,可以参考数据表结构的名称和类型
- 是否参与搜索要分析业务来判断,例如图片地址,就无需参与搜索
- 是否分词呢要看内容,内容如果是一个整体就无需分词,反之则要分词
- 分词器,我们可以统一使用ik_max_word
来看下酒店数据的索引库结构:
PUT /hotel { "mappings": { "properties": { "id": { "type": "keyword" }, "name":{ "type": "text", "analyzer": "ik_max_word", "copy_to": "all" }, "address":{ "type": "keyword", "index": false }, "price":{ "type": "integer" }, "score":{ "type": "integer" }, "brand":{ "type": "keyword", "copy_to": "all" }, "city":{ "type": "keyword", "copy_to": "all" }, "starName":{ "type": "keyword" }, "business":{ "type": "keyword" }, "location":{ "type": "geo_point" }, "pic":{ "type": "keyword", "index": false }, "all":{ "type": "text", "analyzer": "ik_max_word" } } } }
几个特殊字段说明:
- location:地理坐标,里面包含精度、纬度
- all:一个组合字段,其目的是将多字段的值 利用copy_to合并,提供给用户搜索
地理坐标说明:
copy_to说明:
4.1.4 初始化RestClient
在elasticsearch提供的API中,与elasticsearch一切交互都封装在一个名为RestHighLevelClient的类中,必须先完成这个对象的初始化,建立与elasticsearch的连接。
分为三步:
1)引入es的RestHighLevelClient依赖:
<dependency> <groupId>org.elasticsearch.client</groupId> <artifactId>elasticsearch-rest-high-level-client</artifactId> </dependency>
2)因为SpringBoot默认的ES版本是7.6.2,所以我们需要覆盖默认的ES版本:
<properties> <java.version>1.8</java.version> <elasticsearch.version>7.12.1</elasticsearch.version> </properties>
3)初始化RestHighLevelClient:
初始化的代码如下:
RestHighLevelClient client = new RestHighLevelClient(RestClient.builder( HttpHost.create("http://139.155.97.82:9200") ));
这里为了单元测试方便,我们创建一个测试类HotelIndexTest,然后将初始化的代码编写在@BeforeEach方法中:
package cn.itcast.hotel; import org.apache.http.HttpHost; import org.elasticsearch.client.RestHighLevelClient; import org.junit.jupiter.api.AfterEach; import org.junit.jupiter.api.BeforeEach; import org.junit.jupiter.api.Test; import java.io.IOException; public class HotelIndexTest { private RestHighLevelClient client; @BeforeEach void setUp() { this.client = new RestHighLevelClient(RestClient.builder( HttpHost.create("http://139.155.97.82:9200") )); } @AfterEach void tearDown() throws IOException { this.client.close(); } }
4.2 创建索引库
4.2.1 代码解读
创建索引库的API如下:
代码分为三步:
- 1)创建Request对象。因为是创建索引库的操作,因此Request是CreateIndexRequest。
- 2)添加请求参数,其实就是DSL的JSON参数部分。因为json字符串很长,这里是定义了静态字符串常量MAPPING_TEMPLATE,让代码看起来更加优雅。
- 3)发送请求,client.indices()方法的返回值是IndicesClient类型,封装了所有与索引库操作有关的方法。
4.2.2 完整示例
在hotel-demo的cn.itcast.hotel.constants包下,创建一个类,定义mapping映射的JSON字符串常量:
package cn.itcast.hotel.constants; public class HotelConstants { public static final String MAPPING_TEMPLATE = "{\n" + " \"mappings\": {\n" + " \"properties\": {\n" + " \"id\": {\n" + " \"type\": \"keyword\"\n" + " },\n" + " \"name\":{\n" + " \"type\": \"text\",\n" + " \"analyzer\": \"ik_max_word\",\n" + " \"copy_to\": \"all\"\n" + " },\n" + " \"address\":{\n" + " \"type\": \"keyword\",\n" + " \"index\": false\n" + " },\n" + " \"price\":{\n" + " \"type\": \"integer\"\n" + " },\n" + " \"score\":{\n" + " \"type\": \"integer\"\n" + " },\n" + " \"brand\":{\n" + " \"type\": \"keyword\",\n" + " \"copy_to\": \"all\"\n" + " },\n" + " \"city\":{\n" + " \"type\": \"keyword\",\n" + " \"copy_to\": \"all\"\n" + " },\n" + " \"starName\":{\n" + " \"type\": \"keyword\"\n" + " },\n" + " \"business\":{\n" + " \"type\": \"keyword\"\n" + " },\n" + " \"location\":{\n" + " \"type\": \"geo_point\"\n" + " },\n" + " \"pic\":{\n" + " \"type\": \"keyword\",\n" + " \"index\": false\n" + " },\n" + " \"all\":{\n" + " \"type\": \"text\",\n" + " \"analyzer\": \"ik_max_word\"\n" + " }\n" + " }\n" + " }\n" + "}"; }
在hotel-demo中的HotelIndexTest测试类中,编写单元测试,实现创建索引:
@Test void createHotelIndex() throws IOException { // 1.创建Request对象 CreateIndexRequest request = new CreateIndexRequest("hotel"); // 2.准备请求的参数:DSL语句 request.source(MAPPING_TEMPLATE, XContentType.JSON); // 3.发送请求 client.indices().create(request, RequestOptions.DEFAULT); }
4.3 删除索引库
删除索引库的DSL语句非常简单:
DELETE /hotel
与创建索引库相比:
- 请求方式从PUT变为DELTE
- 请求路径不变
- 无请求参数
所以代码的差异,注意体现在Request对象上。依然是三步走:
- 1)创建Request对象。这次是DeleteIndexRequest对象
- 2)准备参数。这里是无参
- 3)发送请求。改用delete方法
在hotel-demo中的HotelIndexTest测试类中,编写单元测试,实现删除索引:
@Test void testDeleteHotelIndex() throws IOException { // 1.创建Request对象 DeleteIndexRequest request = new DeleteIndexRequest("hotel"); // 2.发送请求 client.indices().delete(request, RequestOptions.DEFAULT); }
4.4 判断索引库是否存在
判断索引库是否存在,本质就是查询,对应的DSL是:
GET /hotel
因此与删除的Java代码流程是类似的。依然是三步走:
- 1)创建Request对象。这次是GetIndexRequest对象
- 2)准备参数。这里是无参
- 3)发送请求。改用exists方法
@Test void testExistsHotelIndex() throws IOException { // 1.创建Request对象 GetIndexRequest request = new GetIndexRequest("hotel"); // 2.发送请求 boolean exists = client.indices().exists(request, RequestOptions.DEFAULT); // 3.输出 System.err.println(exists ? "索引库已经存在!" : "索引库不存在!"); }
4.5 总结
JavaRestClient操作elasticsearch的流程基本类似。核心是client.indices()方法来获取索引库的操作对象。
索引库操作的基本步骤:
- 初始化RestHighLevelClient
- 创建XxxIndexRequest。XXX是Create、Get、Delete
- 准备DSL( Create时需要,其它是无参)
- 发送请求。调用RestHighLevelClient#indices().xxx()方法,xxx是create、exists、delete
5. RestClient操作文档
为了与索引库操作分离,再次参加一个测试类,做两件事情:
- 初始化RestHighLevelClient
- 酒店数据在数据库,需要利用IHotelService去查询,所以注入这个接口
package cn.itcast.hotel; import cn.itcast.hotel.pojo.Hotel; import cn.itcast.hotel.service.IHotelService; import org.junit.jupiter.api.AfterEach; import org.junit.jupiter.api.BeforeEach; import org.junit.jupiter.api.Test; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.boot.test.context.SpringBootTest; import java.io.IOException; import java.util.List; @SpringBootTest public class HotelDocumentTest { @Autowired private IHotelService hotelService; private RestHighLevelClient client; @BeforeEach void setUp() { this.client = new RestHighLevelClient(RestClient.builder( HttpHost.create("http://139.155.97.82:9200") )); } @AfterEach void tearDown() throws IOException { this.client.close(); } }
5.1 新增文档
将数据库的酒店数据查询出来,写入elasticsearch中。
5.1.1 索引库实体类
数据库查询后的结果是一个Hotel类型的对象。结构如下:
@Data @TableName("tb_hotel") public class Hotel { @TableId(type = IdType.INPUT) private Long id; private String name; private String address; private Integer price; private Integer score; private String brand; private String city; private String starName; private String business; private String longitude; private String latitude; private String pic; }
与索引库结构存在差异:
- longitude和latitude需要合并为location
因此,需要定义一个新的类型,与索引库结构吻合:
package cn.itcast.hotel.pojo; import lombok.Data; import lombok.NoArgsConstructor; @Data @NoArgsConstructor public class HotelDoc { private Long id; private String name; private String address; private Integer price; private Integer score; private String brand; private String city; private String starName; private String business; private String location; private String pic; public HotelDoc(Hotel hotel) { this.id = hotel.getId(); this.name = hotel.getName(); this.address = hotel.getAddress(); this.price = hotel.getPrice(); this.score = hotel.getScore(); this.brand = hotel.getBrand(); this.city = hotel.getCity(); this.starName = hotel.getStarName(); this.business = hotel.getBusiness(); this.location = hotel.getLatitude() + ", " + hotel.getLongitude(); this.pic = hotel.getPic(); } }
5.1.2 语法说明
新增文档的DSL语句如下:
POST /{索引库名}/_doc/1 { "name": "Jack", "age": 21 }
对应的java代码如图:
可以看到与创建索引库类似,同样是三步走:
- 1)创建Request对象
- 2)准备请求参数,也就是DSL中的JSON文档
- 3)发送请求
变化的地方在于,这里直接使用client.xxx()的API,不再需要client.indices()了。
5.1.3.完整代码
导入酒店数据,基本流程一致,但是需要考虑几点变化:
- 酒店数据来自于数据库,需要先查询出来,得到hotel对象
- hotel对象需要转为HotelDoc对象
- HotelDoc需要序列化为json格式
因此,代码整体步骤如下:
- 1)根据id查询酒店数据Hotel
- 2)将Hotel封装为HotelDoc
- 3)将HotelDoc序列化为JSON
- 4)创建IndexRequest,指定索引库名和id
- 5)准备请求参数,也就是JSON文档
- 6)发送请求
在hotel-demo的HotelDocumentTest测试类中,编写单元测试:
@Test void testAddDocument() throws IOException { // 1.根据id查询酒店数据 Hotel hotel = hotelService.getById(61083L); // 2.转换为文档类型 HotelDoc hotelDoc = new HotelDoc(hotel); // 3.将HotelDoc转json String json = JSON.toJSONString(hotelDoc); // 1.准备Request对象 IndexRequest request = new IndexRequest("hotel").id(hotelDoc.getId().toString()); // 2.准备Json文档 request.source(json, XContentType.JSON); // 3.发送请求 client.index(request, RequestOptions.DEFAULT); }
5.2 查询文档
5.2.1 语法说明
查询的DSL语句如下:
GET /hotel/_doc/{id}
非常简单,因此代码大概分两步:
- 准备Request对象
- 发送请求
不过查询的目的是得到结果,解析为HotelDoc,因此难点是结果的解析。完整代码如下:
可以看到,结果是一个JSON,其中文档放在一个
_source
属性中,因此解析就是拿到_source
,反序列化为Java对象即可。与之前类似,也是三步走:
- 1)准备Request对象。这次是查询,所以是GetRequest
- 2)发送请求,得到结果。因为是查询,这里调用client.get()方法
- 3)解析结果,就是对JSON做反序列化
5.2.2 完整代码
在hotel-demo的HotelDocumentTest测试类中,编写单元测试:
@Test void testGetDocumentById() throws IOException { // 1.准备Request GetRequest request = new GetRequest("hotel", "61082"); // 2.发送请求,得到响应 GetResponse response = client.get(request, RequestOptions.DEFAULT); // 3.解析响应结果 String json = response.getSourceAsString(); HotelDoc hotelDoc = JSON.parseObject(json, HotelDoc.class); System.out.println(hotelDoc); }
5.3 删除文档
删除的DSL为是这样的:
DELETE /hotel/_doc/{id}
与查询相比,仅仅是请求方式从DELETE变成GET,可以想象Java代码应该依然是三步走:
- 1)准备Request对象,因为是删除,这次是DeleteRequest对象。要指定索引库名和id
- 2)准备参数,无参
- 3)发送请求。因为是删除,所以是client.delete()方法
在hotel-demo的HotelDocumentTest测试类中,编写单元测试:
@Test void testDeleteDocument() throws IOException { // 1.准备Request DeleteRequest request = new DeleteRequest("hotel", "61083"); // 2.发送请求 client.delete(request, RequestOptions.DEFAULT); }
5.4 修改文档
5.4.1 语法说明
两种方式:
- 全量修改:本质是先根据id删除,再新增
- 增量修改:修改文档中的指定字段值
在RestClient的API中,全量修改与新增的API完全一致,判断依据是ID:
- 如果新增时,ID已经存在,则修改
- 如果新增时,ID不存在,则新增
这里不再赘述,我们主要关注增量修改。
代码示例如图:
与之前类似,也是三步走:
- 1)准备Request对象。这次是修改,所以是UpdateRequest
- 2)准备参数。也就是JSON文档,里面包含要修改的字段
- 3)更新文档。这里调用client.update()方法
5.4.2.完整代码
在hotel-demo的HotelDocumentTest测试类中,编写单元测试:
@Test void testUpdateDocument() throws IOException { // 1.准备Request UpdateRequest request = new UpdateRequest("hotel", "61083"); // 2.准备请求参数 request.doc( "price", "952", "starName", "四钻" ); // 3.发送请求 client.update(request, RequestOptions.DEFAULT); }
5.5 批量导入文档
案例需求:利用BulkRequest批量将数据库数据导入到索引库中。
步骤如下:
利用mybatis-plus查询酒店数据
将查询到的酒店数据(Hotel)转换为文档类型数据(HotelDoc)
利用JavaRestClient中的BulkRequest批处理,实现批量新增文档
5.5.1 语法说明
批量处理BulkRequest,其本质就是将多个普通的CRUD请求组合在一起发送。
其中提供了一个add方法,用来添加其他请求:
可以看到,能添加的请求包括:
- IndexRequest,也就是新增
- UpdateRequest,也就是修改
- DeleteRequest,也就是删除
因此Bulk中添加了多个IndexRequest,就是批量新增功能了。示例:
其实还是三步走:
- 1)创建Request对象。这里是BulkRequest
- 2)准备参数。批处理的参数,就是其它Request对象,这里就是多个IndexRequest
- 3)发起请求。这里是批处理,调用的方法为client.bulk()方法
我们在导入酒店数据时,将上述代码改造成for循环处理即可。
5.5.2 完整代码
在hotel-demo的HotelDocumentTest测试类中,编写单元测试:
@Test void testBulkRequest() throws IOException { // 批量查询酒店数据 List<Hotel> hotels = hotelService.list(); // 1.创建Request BulkRequest request = new BulkRequest(); // 2.准备参数,添加多个新增的Request for (Hotel hotel : hotels) { // 2.1.转换为文档类型HotelDoc HotelDoc hotelDoc = new HotelDoc(hotel); // 2.2.创建新增文档的Request对象 request.add(new IndexRequest("hotel") .id(hotelDoc.getId().toString()) .source(JSON.toJSONString(hotelDoc), XContentType.JSON)); } // 3.发送请求 client.bulk(request, RequestOptions.DEFAULT); }
5.6 小结
文档操作的基本步骤:
- 初始化RestHighLevelClient
- 创建XxxRequest。XXX是Index、Get、Update、Delete、Bulk
- 准备参数(Index、Update、Bulk时需要)
- 发送请求。调用RestHighLevelClient#.xxx()方法,xxx是index、get、update、delete、bulk
- 解析结果(Get时需要)
6. DSL查询文档
elasticsearch的查询依然是基于JSON风格的DSL来实现的。
6.1 DSL查询分类
Elasticsearch提供了基于JSON的DSL(Domain Specific Language)来定义查询。常见的查询类型包括:
查询所有:查询出所有数据,一般测试用。例如:match_all
全文检索(full text)查询:利用分词器对用户输入内容分词,然后去倒排索引库中匹配。例如:
- match_query
- multi_match_query
精确查询:根据精确词条值查找数据,一般是查找keyword、数值、日期、boolean等类型字段。例如:
- ids
- range
- term
地理(geo)查询:根据经纬度查询。例如:
- geo_distance
- geo_bounding_box
复合(compound)查询:复合查询可以将上述各种查询条件组合起来,合并查询条件。例如:
- bool
- function_score
查询的语法基本一致:
GET /indexName/_search { "query": { "查询类型": { "查询条件": "条件值" } } }
以查询所有为例,其中:
- 查询类型为match_all
- 没有查询条件
// 查询所有 GET /indexName/_search { "query": { "match_all": { } } }
其它查询无非就是查询类型、查询条件的变化。
6.2 全文检索查询
6.2.1 使用场景
全文检索查询的基本流程如下:
- 对用户搜索的内容做分词,得到词条
- 根据词条去倒排索引库中匹配,得到文档id
- 根据文档id找到文档,返回给用户
比较常用的场景包括:
- 商城的输入框搜索
- 百度输入框搜索
因为是拿着词条去匹配,因此参与搜索的字段也必须是可分词的text类型的字段。
6.2.2 基本语法
常见的全文检索查询包括:
- match查询:单字段查询
- multi_match查询:多字段查询,任意一个字段符合条件就算符合查询条件
match查询语法如下:
GET /indexName/_search { "query": { "match": { "FIELD": "TEXT" } } }
mulit_match语法如下:
GET /indexName/_search { "query": { "multi_match": { "query": "TEXT", "fields": ["FIELD1", " FIELD12"] } } }
6.2.3 示例
match查询示例:
multi_match查询示例:
可以看到,两种查询结果是一样的,为什么?
因为我们将brand、name、business值都利用copy_to复制到了all字段中。因此你根据三个字段搜索,和根据all字段搜索效果当然一样了。
但是,搜索字段越多,对查询性能影响越大,因此建议采用copy_to,然后单字段查询的方式。
6.2.4 总结
match和multi_match的区别是什么?
- match:根据一个字段查询
- multi_match:根据多个字段查询,参与查询字段越多,查询性能越差
6.3 精准查询
精确查询一般是查找keyword、数值、日期、boolean等类型字段。所以不会对搜索条件分词。常见的有:
- term:根据词条精确值查询
- range:根据值的范围查询
6.3.1 term查询
因为精确查询的字段搜是不分词的字段,因此查询的条件也必须是不分词的词条。查询时,用户输入的内容跟自动值完全匹配时才认为符合条件。如果用户输入的内容过多,反而搜索不到数据。
语法说明:
// term查询 GET /indexName/_search { "query": { "term": { "FIELD": { "value": "VALUE" } } } }
示例:
当搜索的是精确词条时,能正确查询出结果:
但是,当搜索的内容不是词条,而是多个词语形成的短语时,反而搜索不到:
6.3.2 range查询
范围查询,一般应用在对数值类型做范围过滤的时候。比如做价格范围过滤。
基本语法:
// range查询 GET /indexName/_search { "query": { "range": { "FIELD": { "gte": 10, // 这里的gte代表大于等于,gt则代表大于 "lte": 20 // lte代表小于等于,lt则代表小于 } } } }
示例:
6.3.3 总结
精确查询常见的有哪些?
- term查询:根据词条精确匹配,一般搜索keyword类型、数值类型、布尔类型、日期类型字段
- range查询:根据数值范围查询,可以是数值、日期的范围
6.4 地理坐标查询
所谓的地理坐标查询,其实就是根据经纬度查询,官方文档:https://www.elastic.co/guide/en/elasticsearch/reference/current/geo-queries.html
常见的使用场景包括:
- 携程:搜索附近的酒店
- 滴滴:搜索附近的出租车
- 微信:搜索附近的人
6.4.1 矩形范围查询
矩形范围查询,也就是geo_bounding_box查询,查询坐标落在某个矩形范围的所有文档:
查询时,需要指定矩形的左上、右下两个点的坐标,然后画出一个矩形,落在该矩形内的都是符合条件的点。
语法如下:
// geo_bounding_box查询 GET /indexName/_search { "query": { "geo_bounding_box": { "FIELD": { "top_left": { // 左上点 "lat": 31.1, "lon": 121.5 }, "bottom_right": { // 右下点 "lat": 30.9, "lon": 121.7 } } } } }
这种并不符合“附近的人”这样的需求,所以我们就不做了。
6.4.2 附近查询
附近查询,也叫做距离查询(geo_distance):查询到指定中心点小于某个距离值的所有文档。
换句话来说,在地图上找一个点作为圆心,以指定距离为半径,画一个圆,落在圆内的坐标都算符合条件:
语法说明:
// geo_distance 查询 GET /indexName/_search { "query": { "geo_distance": { "distance": "15km", // 半径 "FIELD": "31.21,121.5" // 圆心 } } }
示例:
先搜索陆家嘴附近15km的酒店:
发现共有47家酒店。
然后把半径缩短到3公里:
可以发现,搜索到的酒店数量减少到了5家。
6.5 复合查询
复合(compound)查询:复合查询可以将其它简单查询组合起来,实现更复杂的搜索逻辑。常见的有两种:
- fuction score:算分函数查询,可以控制文档相关性算分,控制文档排名
- bool query:布尔查询,利用逻辑关系组合多个其它的查询,实现复杂搜索
6.5.1 相关性算分
当利用match查询时,文档结果会根据与搜索词条的关联度打分(_score),返回结果时按照分值降序排列。
例如,搜索 “虹桥如家”,结果如下:
[ { "_score" : 17.850193, "_source" : { "name" : "虹桥如家酒店真不错", } }, { "_score" : 12.259849, "_source" : { "name" : "外滩如家酒店真不错", } }, { "_score" : 11.91091, "_source" : { "name" : "迪士尼如家酒店真不错", } } ]
在elasticsearch中,早期使用的打分算法是TF-IDF算法,公式如下:
在后来的5.1版本升级中,elasticsearch将算法改进为BM25算法,公式如下:
TF-IDF算法有一各缺陷,就是词条频率越高,文档得分也会越高,单个词条对文档影响较大。而BM25则会让单个词条的算分有一个上限,曲线更加平滑:
小结:elasticsearch会根据词条和文档的相关度做打分,算法由两种:
- TF-IDF算法
- BM25算法,elasticsearch5.1版本后采用的算法
6.5.2 算分函数查询
根据相关度打分是比较合理的需求,但合理的不一定是产品经理需要的。
以百度为例,你搜索的结果中,并不是相关度越高排名越靠前,而是谁掏的钱多排名就越靠前。如图:
要想认为控制相关性算分,就需要利用elasticsearch中的function score 查询了。
1)语法说明
function score 查询中包含四部分内容:
- 原始查询条件:query部分,基于这个条件搜索文档,并且基于BM25算法给文档打分,原始算分(query score)
- 过滤条件:filter部分,符合该条件的文档才会重新算分
- 算分函数:符合filter条件的文档要根据这个函数做运算,得到的函数算分(function score),有四种函数
- weight:函数结果是常量
- field_value_factor:以文档中的某个字段值作为函数结果
- random_score:以随机数作为函数结果
- script_score:自定义算分函数算法
- 运算模式:算分函数的结果、原始查询的相关性算分,两者之间的运算方式,包括:
- multiply:相乘
- replace:用function score替换query score
- 其它,例如:sum、avg、max、min
function score的运行流程如下:
- 1)根据原始条件查询搜索文档,并且计算相关性算分,称为原始算分(query score)
- 2)根据过滤条件,过滤文档
- 3)符合过滤条件的文档,基于算分函数运算,得到函数算分(function score)
- 4)将原始算分(query score)和函数算分(function score)基于运算模式做运算,得到最终结果,作为相关性算分。
因此,其中的关键点是:
- 过滤条件:决定哪些文档的算分被修改
- 算分函数:决定函数算分的算法
- 运算模式:决定最终算分结果
2)示例
需求:给“如家”这个品牌的酒店排名靠前一些
翻译一下这个需求,转换为之前说的四个要点:
- 原始条件:不确定,可以任意变化
- 过滤条件:brand = “如家”
- 算分函数:可以简单粗暴,直接给固定的算分结果,weight
- 运算模式:比如求和
因此最终的DSL语句如下:
GET /hotel/_search { "query": { "function_score": { "query": { .... }, // 原始查询,可以是任意条件 "functions": [ // 算分函数 { "filter": { // 满足的条件,品牌必须是如家 "term": { "brand": "如家" } }, "weight": 2 // 算分权重为2 } ], "boost_mode": "sum" // 加权模式,求和 } } }
测试,在未添加算分函数时,如家得分如下:
添加了算分函数后,如家得分就提升了:
3)小结
function score query定义的三要素是什么?
- 过滤条件:哪些文档要加分
- 算分函数:如何计算function score
- 加权方式:function score 与 query score如何运算
6.5.3 布尔查询
布尔查询是一个或多个查询子句的组合,每一个子句就是一个子查询。子查询的组合方式有:
- must:必须匹配每个子查询,类似“与”
- should:选择性匹配子查询,类似“或”
- must_not:必须不匹配,不参与算分,类似“非”
- filter:必须匹配,不参与算分
比如在搜索酒店时,除了关键字搜索外,我们还可能根据品牌、价格、城市等字段做过滤:
每一个不同的字段,其查询的条件、方式都不一样,必须是多个不同的查询,而要组合这些查询,就必须用bool查询了。
需要注意的是,搜索时,参与打分的字段越多,查询的性能也越差。因此这种多条件查询时,建议这样做:
- 搜索框的关键字搜索,是全文检索查询,使用must查询,参与算分
- 其它过滤条件,采用filter查询。不参与算分
1)语法示例:
GET /hotel/_search { "query": { "bool": { "must": [ {"term": {"city": "上海" }} ], "should": [ {"term": {"brand": "皇冠假日" }}, {"term": {"brand": "华美达" }} ], "must_not": [ { "range": { "price": { "lte": 500 } }} ], "filter": [ { "range": {"score": { "gte": 45 } }} ] } } }
2)示例
需求:搜索名字包含“如家”,价格不高于400,在坐标31.21,121.5周围10km范围内的酒店。
分析:
- 名称搜索,属于全文检索查询,应该参与算分。放到must中
- 价格不高于400,用range查询,属于过滤条件,不参与算分。放到must_not中
- 周围10km范围内,用geo_distance查询,属于过滤条件,不参与算分。放到filter中
3)小结
bool查询有几种逻辑关系?
- must:必须匹配的条件,可以理解为“与”
- should:选择性匹配的条件,可以理解为“或”
- must_not:必须不匹配的条件,不参与打分
- filter:必须匹配的条件,不参与打分
7. 搜索结果处理
搜索的结果可以按照用户指定的方式去处理或展示。
7.1 排序
elasticsearch默认是根据相关度算分(_score)来排序,但是也支持自定义方式对搜索结果排序。可以排序字段类型有:keyword类型、数值类型、地理坐标类型、日期类型等。
7.1.1 普通字段排序
keyword、数值、日期类型排序的语法基本一致。
语法:
GET /indexName/_search { "query": { "match_all": {} }, "sort": [ { "FIELD": "desc" // 排序字段、排序方式ASC、DESC } ] }
排序条件是一个数组,也就是可以写多个排序条件。按照声明的顺序,当第一个条件相等时,再按照第二个条件排序,以此类推
示例:
需求描述:酒店数据按照用户评价(score)降序排序,评价相同的按照价格(price)升序排序
7.1.2 地理坐标排序
地理坐标排序略有不同。
语法说明:
GET /indexName/_search { "query": { "match_all": {} }, "sort": [ { "_geo_distance" : { "FIELD" : "纬度,经度", // 文档中geo_point类型的字段名、目标坐标点 "order" : "asc", // 排序方式 "unit" : "km" // 排序的距离单位 } } ] }
这个查询的含义是:
- 指定一个坐标,作为目标点
- 计算每一个文档中,指定字段(必须是geo_point类型)的坐标 到目标点的距离是多少
- 根据距离排序
示例:
需求描述:实现对酒店数据按照到你的位置坐标的距离升序排序
提示:获取你的位置的经纬度的方式:https://lbs.amap.com/demo/jsapi-v2/example/map/click-to-get-lnglat/
假设我的位置是:31.034661,121.612282,寻找我周围距离最近的酒店。
7.2 分页
elasticsearch 默认情况下只返回top10的数据。而如果要查询更多数据就需要修改分页参数了。elasticsearch中通过修改from、size参数来控制要返回的分页结果:
- from:从第几个文档开始
- size:总共查询几个文档
类似于mysql中的
limit ?, ?
7.2.1 基本的分页
分页的基本语法如下:
GET /hotel/_search { "query": { "match_all": {} }, "from": 0, // 分页开始的位置,默认为0 "size": 10, // 期望获取的文档总数 "sort": [ {"price": "asc"} ] }
7.2.2 深度分页问题
现在,我要查询990~1000的数据,查询逻辑要这么写:
GET /hotel/_search { "query": { "match_all": {} }, "from": 990, // 分页开始的位置,默认为0 "size": 10, // 期望获取的文档总数 "sort": [ {"price": "asc"} ] }
这里是查询990开始的数据,也就是 第990~第1000条 数据。
不过,elasticsearch内部分页时,必须先查询 0~1000条,然后截取其中的990 ~ 1000的这10条:
查询TOP1000,如果es是单点模式,这并无太大影响。
但是elasticsearch将来一定是集群,例如我集群有5个节点,我要查询TOP1000的数据,并不是每个节点查询200条就可以了。
因为节点A的TOP200,在另一个节点可能排到10000名以外了。
因此要想获取整个集群的TOP1000,必须先查询出每个节点的TOP1000,汇总结果后,重新排名,重新截取TOP1000。
那如果我要查询9900~10000的数据呢?是不是要先查询TOP10000呢?那每个节点都要查询10000条?汇总到内存中?
当查询分页深度较大时,汇总数据过多,对内存和CPU会产生非常大的压力,因此elasticsearch会禁止from+ size 超过10000的请求。
针对深度分页,ES提供了两种解决方案,官方文档:
- search after:分页时需要排序,原理是从上一次的排序值开始,查询下一页数据。官方推荐使用的方式。
- scroll:原理将排序后的文档id形成快照,保存在内存。官方已经不推荐使用。
7.2.3 小结
分页查询的常见实现方案以及优缺点:
from + size
:
- 优点:支持随机翻页
- 缺点:深度分页问题,默认查询上限(from + size)是10000
- 场景:百度、京东、谷歌、淘宝这样的随机翻页搜索
after search
:
- 优点:没有查询上限(单次查询的size不超过10000)
- 缺点:只能向后逐页查询,不支持随机翻页
- 场景:没有随机翻页需求的搜索,例如手机向下滚动翻页
scroll
:
- 优点:没有查询上限(单次查询的size不超过10000)
- 缺点:会有额外内存消耗,并且搜索结果是非实时的
- 场景:海量数据的获取和迁移。从ES7.1开始不推荐,建议用 after search方案。
7.3 高亮
7.3.1 高亮原理
什么是高亮显示呢?
我们在百度,京东搜索时,关键字会变成红色,比较醒目,这叫高亮显示:
高亮显示的实现分为两步:
- 1)给文档中的所有关键字都添加一个标签,例如
<em>
标签- 2)页面给
<em>
标签编写CSS样式
7.3.2 实现高亮
高亮的语法:
GET /hotel/_search { "query": { "match": { "FIELD": "TEXT" // 查询条件,高亮一定要使用全文检索查询 } }, "highlight": { "fields": { // 指定要高亮的字段 "FIELD": { "pre_tags": "<em>", // 用来标记高亮字段的前置标签 "post_tags": "</em>" // 用来标记高亮字段的后置标签 } } } }
注意:
- 高亮是对关键字高亮,因此搜索条件必须带有关键字,而不能是范围这样的查询。
- 默认情况下,高亮的字段,必须与搜索指定的字段一致,否则无法高亮
- 如果要对非搜索字段高亮,则需要添加一个属性:required_field_match=false
示例:
7.4 总结
查询的DSL是一个大的JSON对象,包含下列属性:
- query:查询条件
- from和size:分页条件
- sort:排序条件
- highlight:高亮条件
示例:
8. RestClient查询文档
文档的查询同样适用昨天学习的 RestHighLevelClient对象,基本步骤包括:
- 1)准备Request对象
- 2)准备请求参数
- 3)发起请求
- 4)解析响应
8.1 快速入门
以match_all查询为例
8.1.1 发起查询请求
代码解读:
第一步,创建
SearchRequest
对象,指定索引库名第二步,利用
request.source()
构建DSL,DSL中可以包含查询、分页、排序、高亮等
query()
:代表查询条件,利用QueryBuilders.matchAllQuery()
构建一个match_all查询的DSL第三步,利用client.search()发送请求,得到响应
这里关键的API有两个,一个是
request.source()
,其中包含了查询、排序、分页、高亮等所有功能:另一个是
QueryBuilders
,其中包含match、term、function_score、bool等各种查询:
8.1.2 解析响应
响应结果的解析:
elasticsearch返回的结果是一个JSON字符串,结构包含:
hits
:命中的结果
total
:总条数,其中的value是具体的总条数值max_score
:所有结果中得分最高的文档的相关性算分hits
:搜索结果的文档数组,其中的每个文档都是一个json对象
_source
:文档中的原始数据,也是json对象因此,解析响应结果就是逐层解析JSON字符串,流程如下:
SearchHits
:通过response.getHits()获取,就是JSON中的最外层的hits,代表命中的结果
SearchHits#getTotalHits().value
:获取总条数信息SearchHits#getHits()
:获取SearchHit数组,也就是文档数组
SearchHit#getSourceAsString()
:获取文档结果中的_source,也就是原始的json文档数据
8.1.3 完整代码
完整代码如下:
@Test void testMatchAll() throws IOException { // 1.准备Request SearchRequest request = new SearchRequest("hotel"); // 2.准备DSL request.source() .query(QueryBuilders.matchAllQuery()); // 3.发送请求 SearchResponse response = client.search(request, RequestOptions.DEFAULT); // 4.解析响应 handleResponse(response); } private void handleResponse(SearchResponse response) { // 4.解析响应 SearchHits searchHits = response.getHits(); // 4.1.获取总条数 long total = searchHits.getTotalHits().value; System.out.println("共搜索到" + total + "条数据"); // 4.2.文档数组 SearchHit[] hits = searchHits.getHits(); // 4.3.遍历 for (SearchHit hit : hits) { // 获取文档source String json = hit.getSourceAsString(); // 反序列化 HotelDoc hotelDoc = JSON.parseObject(json, HotelDoc.class); System.out.println("hotelDoc = " + hotelDoc); } }
8.1.4 小结
查询的基本步骤是:
创建SearchRequest对象
准备Request.source(),也就是DSL。
① QueryBuilders来构建查询条件
② 传入Request.source() 的 query() 方法
发送请求,得到结果
解析结果(参考JSON结果,从外到内,逐层解析)
8.2 match查询
全文检索的match和multi_match查询与match_all的API基本一致。差别是查询条件,也就是query的部分。
因此,Java代码上的差异主要是request.source().query()中的参数了。同样是利用QueryBuilders提供的方法:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-nfR8AC2I-1687705855000)(E:\itcast\资料\服务框架\03-分布式搜索引擎ElasticSearch\day02-Elasticsearch02\讲义\md\assets\image-20210721215843099.png)]
而结果解析代码则完全一致,可以抽取并共享。
完整代码如下:
@Test void testMatch() throws IOException { // 1.准备Request SearchRequest request = new SearchRequest("hotel"); // 2.准备DSL request.source() .query(QueryBuilders.matchQuery("all", "如家")); // 3.发送请求 SearchResponse response = client.search(request, RequestOptions.DEFAULT); // 4.解析响应 handleResponse(response); }
8.3 精确查询
精确查询主要是两者:
- term:词条精确匹配
- range:范围查询
与之前的查询相比,差异同样在查询条件,其它都一样。
查询条件构造的API如下:
8.4 布尔查询
布尔查询是用must、must_not、filter等方式组合其它查询,代码示例如下:
可以看到,API与其它查询的差别同样是在查询条件的构建,QueryBuilders,结果解析等其他代码完全不变。
完整代码如下:
@Test void testBool() throws IOException { // 1.准备Request SearchRequest request = new SearchRequest("hotel"); // 2.准备DSL // 2.1.准备BooleanQuery BoolQueryBuilder boolQuery = QueryBuilders.boolQuery(); // 2.2.添加term boolQuery.must(QueryBuilders.termQuery("city", "杭州")); // 2.3.添加range boolQuery.filter(QueryBuilders.rangeQuery("price").lte(250)); request.source().query(boolQuery); // 3.发送请求 SearchResponse response = client.search(request, RequestOptions.DEFAULT); // 4.解析响应 handleResponse(response); }
8.5 排序、分页
搜索结果的排序和分页是与query同级的参数,因此同样是使用request.source()来设置。
对应的API如下:
完整代码示例:
@Test void testPageAndSort() throws IOException { // 页码,每页大小 int page = 1, size = 5; // 1.准备Request SearchRequest request = new SearchRequest("hotel"); // 2.准备DSL // 2.1.query request.source().query(QueryBuilders.matchAllQuery()); // 2.2.排序 sort request.source().sort("price", SortOrder.ASC); // 2.3.分页 from、size request.source().from((page - 1) * size).size(5); // 3.发送请求 SearchResponse response = client.search(request, RequestOptions.DEFAULT); // 4.解析响应 handleResponse(response); }
8.6 高亮
高亮的代码与之前代码差异较大,有两点:
- 查询的DSL:其中除了查询条件,还需要添加高亮条件,同样是与query同级。
- 结果解析:结果除了要解析_source文档数据,还要解析高亮结果
8.6.1 高亮请求构建
高亮请求的构建API如下:
上述代码省略了查询条件部分,但是大家不要忘了:高亮查询必须使用全文检索查询,并且要有搜索关键字,将来才可以对关键字高亮。
完整代码如下:
@Test void testHighlight() throws IOException { // 1.准备Request SearchRequest request = new SearchRequest("hotel"); // 2.准备DSL // 2.1.query request.source().query(QueryBuilders.matchQuery("all", "如家")); // 2.2.高亮 request.source().highlighter(new HighlightBuilder().field("name").requireFieldMatch(false)); // 3.发送请求 SearchResponse response = client.search(request, RequestOptions.DEFAULT); // 4.解析响应 handleResponse(response); }
8.6.2 高亮结果解析
高亮的结果与查询的文档结果默认是分离的,并不在一起。
因此解析高亮的代码需要额外处理:
代码解读:
- 第一步:从结果中获取source。hit.getSourceAsString(),这部分是非高亮结果,json字符串。还需要反序列为HotelDoc对象
- 第二步:获取高亮结果。hit.getHighlightFields(),返回值是一个Map,key是高亮字段名称,值是HighlightField对象,代表高亮值
- 第三步:从map中根据高亮字段名称,获取高亮字段值对象HighlightField
- 第四步:从HighlightField中获取Fragments,并且转为字符串。这部分就是真正的高亮字符串了
- 第五步:用高亮的结果替换HotelDoc中的非高亮结果
完整代码如下:
private void handleResponse(SearchResponse response) { // 4.解析响应 SearchHits searchHits = response.getHits(); // 4.1.获取总条数 long total = searchHits.getTotalHits().value; System.out.println("共搜索到" + total + "条数据"); // 4.2.文档数组 SearchHit[] hits = searchHits.getHits(); // 4.3.遍历 for (SearchHit hit : hits) { // 获取文档source String json = hit.getSourceAsString(); // 反序列化 HotelDoc hotelDoc = JSON.parseObject(json, HotelDoc.class); // 获取高亮结果 Map<String, HighlightField> highlightFields = hit.getHighlightFields(); if (!CollectionUtils.isEmpty(highlightFields)) { // 根据字段名获取高亮结果 HighlightField highlightField = highlightFields.get("name"); if (highlightField != null) { // 获取高亮值 String name = highlightField.getFragments()[0].string(); // 覆盖非高亮结果 hotelDoc.setName(name); } } System.out.println("hotelDoc = " + hotelDoc); } }
9. 某马旅游案例
通过某马旅游的案例来实战演练下之前学习的知识。
实现四部分功能:
- 酒店搜索和分页
- 酒店结果过滤
- 我周边的酒店
- 酒店竞价排名
启动hotel-demo项目,其默认端口是8089,访问http://localhost:8089,就能看到项目页面了:
9.1 酒店搜索和分页
案例需求:实现某马旅游的酒店搜索功能,完成关键字搜索和分页
9.1.1 需求分析
在项目的首页,有一个大大的搜索框,还有分页按钮:
点击搜索按钮,可以看到浏览器控制台发出了请求:
请求参数如下:
由此可以知道,我们这个请求的信息如下:
- 请求方式:POST
- 请求路径:/hotel/list
- 请求参数:JSON对象,包含4个字段:
- key:搜索关键字
- page:页码
- size:每页大小
- sortBy:排序,目前暂不实现
- 返回值:分页查询,需要返回分页结果PageResult,包含两个属性:
total
:总条数List<HotelDoc>
:当前页的数据因此,我们实现业务的流程如下:
- 步骤一:定义实体类,接收请求参数的JSON对象
- 步骤二:编写controller,接收页面的请求
- 步骤三:编写业务实现,利用RestHighLevelClient实现搜索、分页
9.1.2 定义实体类
实体类有两个,一个是前端的请求参数实体,一个是服务端应该返回的响应结果实体。
1)请求参数
前端请求的json结构如下:
{ "key": "搜索关键字", "page": 1, "size": 3, "sortBy": "default" }
因此,我们在
cn.itcast.hotel.pojo
包下定义一个实体类:package cn.itcast.hotel.pojo; import lombok.Data; @Data public class RequestParams { private String key; private Integer page; private Integer size; private String sortBy; }
2)返回值
分页查询,需要返回分页结果PageResult,包含两个属性:
total
:总条数List<HotelDoc>
:当前页的数据因此,我们在
cn.itcast.hotel.pojo
中定义返回结果:package cn.itcast.hotel.pojo; import lombok.Data; import java.util.List; @Data public class PageResult { private Long total; private List<HotelDoc> hotels; public PageResult() { } public PageResult(Long total, List<HotelDoc> hotels) { this.total = total; this.hotels = hotels; } }
9.1.3 定义controller
定义一个HotelController,声明查询接口,满足下列要求:
- 请求方式:Post
- 请求路径:/hotel/list
- 请求参数:对象,类型为RequestParam
- 返回值:PageResult,包含两个属性
Long total
:总条数List<HotelDoc> hotels
:酒店数据在
cn.itcast.hotel.web
中定义HotelController:@RestController @RequestMapping("/hotel") public class HotelController { @Autowired private IHotelService hotelService; // 搜索酒店数据 @PostMapping("/list") public PageResult search(@RequestBody RequestParams params){ return hotelService.search(params); } }
9.1.4 实现搜索业务
在controller调用了IHotelService,并没有实现该方法,故在IHotelService中定义方法,并且去实现业务逻辑。
1)在
cn.itcast.hotel.service
中的IHotelService
接口中定义一个方法:/** * 根据关键字搜索酒店信息 * @param params 请求参数对象,包含用户输入的关键字 * @return 酒店文档列表 */ PageResult search(RequestParams params);
2)实现搜索业务,肯定离不开RestHighLevelClient,需要把它注册到Spring中作为一个Bean。在
cn.itcast.hotel
中的HotelDemoApplication
中声明这个Bean:@Bean public RestHighLevelClient client(){ return new RestHighLevelClient(RestClient.builder( HttpHost.create("http://139.155.97.82/:9200") )); }
3)在
cn.itcast.hotel.service.impl
中的HotelService
中实现search方法:@Override public PageResult search(RequestParams params) { try { // 1.准备Request SearchRequest request = new SearchRequest("hotel"); // 2.准备DSL // 2.1.query String key = params.getKey(); if (key == null || "".equals(key)) { request.source().query(QueryBuilders.matchAllQuery()); } else { request.source().query(QueryBuilders.matchQuery("all", key)); } // 2.2.分页 int page = params.getPage(); int size = params.getSize(); request.source().from((page - 1) * size).size(size); // 3.发送请求 SearchResponse response = client.search(request, RequestOptions.DEFAULT); // 4.解析响应 return handleResponse(response); } catch (IOException e) { throw new RuntimeException(e); } } // 结果解析 private PageResult handleResponse(SearchResponse response) { // 4.解析响应 SearchHits searchHits = response.getHits(); // 4.1.获取总条数 long total = searchHits.getTotalHits().value; // 4.2.文档数组 SearchHit[] hits = searchHits.getHits(); // 4.3.遍历 List<HotelDoc> hotels = new ArrayList<>(); for (SearchHit hit : hits) { // 获取文档source String json = hit.getSourceAsString(); // 反序列化 HotelDoc hotelDoc = JSON.parseObject(json, HotelDoc.class); // 放入集合 hotels.add(hotelDoc); } // 4.4.封装返回 return new PageResult(total, hotels); }
9.2 酒店结果过滤
需求:添加品牌、城市、星级、价格等过滤功能
9.2.1 需求分析
在页面搜索框下面,会有一些过滤项:
传递的参数如图:
包含的过滤条件有:
- brand:品牌值
- city:城市
- minPrice~maxPrice:价格范围
- starName:星级
我们需要做两件事情:
- 修改请求参数的对象RequestParams,接收上述参数
- 修改业务逻辑,在搜索条件之外,添加一些过滤条件
9.2.2 修改实体类
修改在
cn.itcast.hotel.pojo
包下的实体类RequestParams:@Data public class RequestParams { private String key; private Integer page; private Integer size; private String sortBy; // 下面是新增的过滤条件参数 private String city; private String brand; private String starName; private Integer minPrice; private Integer maxPrice; }
9.2.3 修改搜索业务
在HotelService的search方法中,只有一个地方需要修改:requet.source().query( … )其中的查询条件。
在之前的业务中,只有match查询,根据关键字搜索,现在要添加条件过滤,包括:
- 品牌过滤:是keyword类型,用term查询
- 星级过滤:是keyword类型,用term查询
- 价格过滤:是数值类型,用range查询
- 城市过滤:是keyword类型,用term查询
多个查询条件组合,肯定是boolean查询来组合:
- 关键字搜索放到must中,参与算分
- 其它过滤条件放到filter中,不参与算分
因为条件构建的逻辑比较复杂,这里先封装为一个函数:
buildBasicQuery的代码如下:
private void buildBasicQuery(RequestParams params, SearchRequest request) { // 1.构建BooleanQuery BoolQueryBuilder boolQuery = QueryBuilders.boolQuery(); // 2.关键字搜索 String key = params.getKey(); if (key == null || "".equals(key)) { boolQuery.must(QueryBuilders.matchAllQuery()); } else { boolQuery.must(QueryBuilders.matchQuery("all", key)); } // 3.城市条件 if (params.getCity() != null && !params.getCity().equals("")) { boolQuery.filter(QueryBuilders.termQuery("city", params.getCity())); } // 4.品牌条件 if (params.getBrand() != null && !params.getBrand().equals("")) { boolQuery.filter(QueryBuilders.termQuery("brand", params.getBrand())); } // 5.星级条件 if (params.getStarName() != null && !params.getStarName().equals("")) { boolQuery.filter(QueryBuilders.termQuery("starName", params.getStarName())); } // 6.价格 if (params.getMinPrice() != null && params.getMaxPrice() != null) { boolQuery.filter(QueryBuilders .rangeQuery("price") .gte(params.getMinPrice()) .lte(params.getMaxPrice()) ); } // 7.放入source request.source().query(boolQuery); }
9.3 我周边的酒店
需求:我附近的酒店
9.3.1 需求分析
在酒店列表页的右侧,有一个小地图,点击地图的定位按钮,地图会找到你所在的位置:
并且,在前端会发起查询请求,将你的坐标发送到服务端:
要做的事情就是基于这个location坐标,然后按照距离对周围酒店排序。实现思路如下:
- 修改RequestParams参数,接收location字段
- 修改search方法业务逻辑,如果location有值,添加根据geo_distance排序的功能
9.3.2 修改实体类
修改在
cn.itcast.hotel.pojo
包下的实体类RequestParams:package cn.itcast.hotel.pojo; import lombok.Data; @Data public class RequestParams { private String key; private Integer page; private Integer size; private String sortBy; private String city; private String brand; private String starName; private Integer minPrice; private Integer maxPrice; // 我当前的地理坐标 private String location; }
9.3.3 距离排序API
我们以前学习过排序功能,包括两种:
- 普通字段排序
- 地理坐标排序
我们只讲了普通字段排序对应的java写法。地理坐标排序只学过DSL语法,如下:
GET /indexName/_search { "query": { "match_all": {} }, "sort": [ { "price": "asc" }, { "_geo_distance" : { "FIELD" : "纬度,经度", "order" : "asc", "unit" : "km" } } ] }
对应的java代码示例:
9.3.4 添加距离排序
在
cn.itcast.hotel.service.impl
的HotelService
的search
方法中,添加一个排序功能:完整代码:
@Override public PageResult search(RequestParams params) { try { // 1.准备Request SearchRequest request = new SearchRequest("hotel"); // 2.准备DSL // 2.1.query buildBasicQuery(params, request); // 2.2.分页 int page = params.getPage(); int size = params.getSize(); request.source().from((page - 1) * size).size(size); // 2.3.排序 String location = params.getLocation(); if (location != null && !location.equals("")) { request.source().sort(SortBuilders .geoDistanceSort("location", new GeoPoint(location)) .order(SortOrder.ASC) .unit(DistanceUnit.KILOMETERS) ); } // 3.发送请求 SearchResponse response = client.search(request, RequestOptions.DEFAULT); // 4.解析响应 return handleResponse(response); } catch (IOException e) { throw new RuntimeException(e); } }
9.3.5 排序距离显示
重启服务后,测试我的酒店功能:
发现确实可以实现对我附近酒店的排序,不过并没有看到酒店到底距离我多远,这该怎么办?
排序完成后,页面还要获取我附近每个酒店的具体距离值,这个值在响应结果中是独立的:
因此,我们在结果解析阶段,除了解析source部分以外,还要得到sort部分,也就是排序的距离,然后放到响应结果中。
我们要做两件事:
- 修改HotelDoc,添加排序距离字段,用于页面显示
- 修改HotelService类中的handleResponse方法,添加对sort值的获取
1)修改HotelDoc类,添加距离字段
package cn.itcast.hotel.pojo; import lombok.Data; import lombok.NoArgsConstructor; @Data @NoArgsConstructor public class HotelDoc { private Long id; private String name; private String address; private Integer price; private Integer score; private String brand; private String city; private String starName; private String business; private String location; private String pic; // 排序时的 距离值 private Object distance; public HotelDoc(Hotel hotel) { this.id = hotel.getId(); this.name = hotel.getName(); this.address = hotel.getAddress(); this.price = hotel.getPrice(); this.score = hotel.getScore(); this.brand = hotel.getBrand(); this.city = hotel.getCity(); this.starName = hotel.getStarName(); this.business = hotel.getBusiness(); this.location = hotel.getLatitude() + ", " + hotel.getLongitude(); this.pic = hotel.getPic(); } }
2)修改HotelService中的handleResponse方法
重启后测试,发现页面能成功显示距离了:
9.4 酒店竞价排名
需求:让指定的酒店在搜索结果中排名置顶
9.4.1 需求分析
要让指定酒店在搜索结果中排名置顶,效果如图:
页面会给指定的酒店添加广告标记。
那怎样才能让指定的酒店排名置顶呢?
我们之前学习过的function_score查询可以影响算分,算分高了,自然排名也就高了。而function_score包含3个要素:
- 过滤条件:哪些文档要加分
- 算分函数:如何计算function score
- 加权方式:function score 与 query score如何运算
这里的需求是:让指定酒店排名靠前。因此我们需要给这些酒店添加一个标记,这样在过滤条件中就可以根据这个标记来判断,是否要提高算分。
比如,我们给酒店添加一个字段:isAD,Boolean类型:
- true:是广告
- false:不是广告
这样function_score包含3个要素就很好确定了:
- 过滤条件:判断isAD 是否为true
- 算分函数:我们可以用最简单暴力的weight,固定加权值
- 加权方式:可以用默认的相乘,大大提高算分
因此,业务的实现步骤包括:
给HotelDoc类添加isAD字段,Boolean类型
挑选几个你喜欢的酒店,给它的文档数据添加isAD字段,值为true
修改search方法,添加function score功能,给isAD值为true的酒店增加权重
9.4.2 修改HotelDoc实体
给
cn.itcast.hotel.pojo
包下的HotelDoc类添加isAD字段:
9.4.3 添加广告标记
接下来,挑几个酒店,添加isAD字段,设置为true:
POST /hotel/_update/1902197537 { "doc": { "isAD": true } } POST /hotel/_update/2056126831 { "doc": { "isAD": true } } POST /hotel/_update/1989806195 { "doc": { "isAD": true } } POST /hotel/_update/2056105938 { "doc": { "isAD": true } }
9.4.4 添加算分函数查询
接下来我们就要修改查询条件了。之前是用的boolean 查询,现在要改成function_socre查询。
function_score查询结构如下:
对应的JavaAPI如下:
可以将之前写的boolean查询作为原始查询条件放到query中,接下来就是添加过滤条件、算分函数、加权模式了。所以原来的代码依然可以沿用。
修改
cn.itcast.hotel.service.impl
包下的HotelService
类中的buildBasicQuery
方法,添加算分函数查询:private void buildBasicQuery(RequestParams params, SearchRequest request) { // 1.构建BooleanQuery BoolQueryBuilder boolQuery = QueryBuilders.boolQuery(); // 关键字搜索 String key = params.getKey(); if (key == null || "".equals(key)) { boolQuery.must(QueryBuilders.matchAllQuery()); } else { boolQuery.must(QueryBuilders.matchQuery("all", key)); } // 城市条件 if (params.getCity() != null && !params.getCity().equals("")) { boolQuery.filter(QueryBuilders.termQuery("city", params.getCity())); } // 品牌条件 if (params.getBrand() != null && !params.getBrand().equals("")) { boolQuery.filter(QueryBuilders.termQuery("brand", params.getBrand())); } // 星级条件 if (params.getStarName() != null && !params.getStarName().equals("")) { boolQuery.filter(QueryBuilders.termQuery("starName", params.getStarName())); } // 价格 if (params.getMinPrice() != null && params.getMaxPrice() != null) { boolQuery.filter(QueryBuilders .rangeQuery("price") .gte(params.getMinPrice()) .lte(params.getMaxPrice()) ); } // 2.算分控制 FunctionScoreQueryBuilder functionScoreQuery = QueryBuilders.functionScoreQuery( // 原始查询,相关性算分的查询 boolQuery, // function score的数组 new FunctionScoreQueryBuilder.FilterFunctionBuilder[]{ // 其中的一个function score 元素 new FunctionScoreQueryBuilder.FilterFunctionBuilder( // 过滤条件 QueryBuilders.termQuery("isAD", true), // 算分函数 ScoreFunctionBuilders.weightFactorFunction(10) ) }); request.source().query(functionScoreQuery); }
注:开启其他排名规则,分值排序会变为null,因此要使用分值排序需注释其他排序的功能。
10. 数据聚合
聚合(aggregations)可以让我们极其方便的实现对数据的统计、分析、运算。例如:
- 什么品牌的手机最受欢迎?
- 这些手机的平均价格、最高价格、最低价格?
- 这些手机每月的销售情况如何?
实现这些统计功能的比数据库的sql要方便的多,而且查询速度非常快,可以实现近实时搜索效果。
10.1 聚合的种类
聚合常见的有三类:
**桶(Bucket)**聚合:用来对文档做分组
- TermAggregation:按照文档字段值分组,例如按照品牌值分组、按照国家分组
- Date Histogram:按照日期阶梯分组,例如一周为一组,或者一月为一组
**度量(Metric)**聚合:用以计算一些值,比如:最大值、最小值、平均值等
- Avg:求平均值
- Max:求最大值
- Min:求最小值
- Stats:同时求max、min、avg、sum等
**管道(pipeline)**聚合:其它聚合的结果为基础做聚合
**注意:**参加聚合的字段必须是keyword、日期、数值、布尔类型
10.2 DSL实现聚合
现在要统计所有数据中的酒店品牌有几种,其实就是按照品牌对数据分组。此时可以根据酒店品牌的名称做聚合,也就是Bucket聚合。
10.2.1 Bucket聚合语法
语法如下:
GET /hotel/_search { "size": 0, // 设置size为0,结果中不包含文档,只包含聚合结果 "aggs": { // 定义聚合 "brandAgg": { //给聚合起个名字 "terms": { // 聚合的类型,按照品牌值聚合,所以选择term "field": "brand", // 参与聚合的字段 "size": 20 // 希望获取的聚合结果数量 } } } }
结果如图:
10.2.2 聚合结果排序
默认情况下,Bucket聚合会统计Bucket内的文档数量,记为_count,并且按照_count降序排序。
我们可以指定order属性,自定义聚合的排序方式:
GET /hotel/_search { "size": 0, "aggs": { "brandAgg": { "terms": { "field": "brand", "order": { "_count": "asc" // 按照_count升序排列 }, "size": 20 } } } }
10.2.3 限定聚合范围
默认情况下,Bucket聚合是对索引库的所有文档做聚合,但真实场景下,用户会输入搜索条件,因此聚合必须是对搜索结果聚合。那么聚合必须添加限定条件。
我们可以限定要聚合的文档范围,只要添加query条件即可:
GET /hotel/_search { "query": { "range": { "price": { "lte": 200 // 只对200元以下的文档聚合 } } }, "size": 0, "aggs": { "brandAgg": { "terms": { "field": "brand", "size": 20 } } } }
这次,聚合得到的品牌明显变少了:
10.2.4 Metric聚合语法
对桶内的酒店做运算,获取每个品牌的用户评分的min、max、avg等值。这就要用到Metric聚合了,例如stat聚合:就可以获取min、max、avg等结果。
语法如下:
GET /hotel/_search { "size": 0, "aggs": { "brandAgg": { "terms": { "field": "brand", "size": 20 }, "aggs": { // 是brands聚合的子聚合,也就是分组后对每组分别计算 "score_stats": { // 聚合名称 "stats": { // 聚合类型,这里stats可以计算min、max、avg等 "field": "score" // 聚合字段,这里是score } } } } } }
这次的score_stats聚合是在brandAgg的聚合内部嵌套的子聚合。因为我们需要在每个桶分别计算。
另外,还可以给聚合结果做个排序,例如按照每个桶的酒店平均分做排序:
10.2.5 小结
aggs代表聚合,与query同级,此时query的作用是?
- 限定聚合的的文档范围
聚合必须的三要素:
- 聚合名称
- 聚合类型
- 聚合字段
聚合可配置属性有:
- size:指定聚合结果数量
- order:指定聚合结果排序方式
- field:指定聚合字段
10.3 RestAPI实现聚合
10.3.1 API语法
聚合条件与query条件同级别,因此需要使用request.source()来指定聚合条件。
聚合条件的语法:
聚合的结果也与查询结果不同,API也比较特殊。不过同样是JSON逐层解析:
10.3.2 业务需求
需求:搜索页面的品牌、城市等信息不应该是在页面写死,而是通过聚合索引库中的酒店数据得来的:
分析:
目前,页面的城市列表、星级列表、品牌列表都是写死的,并不会随着搜索结果的变化而变化。但是用户搜索条件改变时,搜索结果会跟着变化。
例如:用户搜索“东方明珠”,那搜索的酒店肯定是在上海东方明珠附近,因此,城市只能是上海,此时城市列表中就不应该显示北京、深圳、杭州这些信息了。
也就是说,搜索结果中包含哪些城市,页面就应该列出哪些城市;搜索结果中包含哪些品牌,页面就应该列出哪些品牌。
如何得知搜索结果中包含哪些品牌?如何得知搜索结果中包含哪些城市?
使用聚合功能,利用Bucket聚合,对搜索结果中的文档基于品牌分组、基于城市分组,就能得知包含哪些品牌、哪些城市了。
因为是对搜索结果聚合,因此聚合是限定范围的聚合,也就是说聚合的限定条件跟搜索文档的条件一致。
查看浏览器可以发现,前端其实已经发出了这样的一个请求:
请求参数与搜索文档的参数完全一致。
返回值类型就是页面要展示的最终结果:
结果是一个Map结构:
- key是字符串,城市、星级、品牌、价格
- value是集合,例如多个城市的名称
1.3.3.业务实现
在
cn.itcast.hotel.web
包的HotelController
中添加一个方法,遵循下面的要求:
- 请求方式:
POST
- 请求路径:
/hotel/filters
- 请求参数:
RequestParams
,与搜索文档的参数一致- 返回值类型:
Map<String, List<String>>
代码:
@PostMapping("filters") public Map<String, List<String>> getFilters(@RequestBody RequestParams params){ return hotelService.getFilters(params); }
这里调用了IHotelService中的getFilters方法,尚未实现。
在
cn.itcast.hotel.service.IHotelService
中定义新方法:Map<String, List<String>> filters(RequestParams params);
在
cn.itcast.hotel.service.impl.HotelService
中实现该方法:@Override public Map<String, List<String>> filters(RequestParams params) { try { // 1.准备Request SearchRequest request = new SearchRequest("hotel"); // 2.准备DSL // 2.1.query buildBasicQuery(params, request); // 2.2.设置size request.source().size(0); // 2.3.聚合 buildAggregation(request); // 3.发出请求 SearchResponse response = client.search(request, RequestOptions.DEFAULT); // 4.解析结果 Map<String, List<String>> result = new HashMap<>(); Aggregations aggregations = response.getAggregations(); // 4.1.根据品牌名称,获取品牌结果 List<String> brandList = getAggByName(aggregations, "brandAgg"); result.put("品牌", brandList); // 4.2.根据品牌名称,获取品牌结果 List<String> cityList = getAggByName(aggregations, "cityAgg"); result.put("城市", cityList); // 4.3.根据品牌名称,获取品牌结果 List<String> starList = getAggByName(aggregations, "starAgg"); result.put("星级", starList); return result; } catch (IOException e) { throw new RuntimeException(e); } } private void buildAggregation(SearchRequest request) { request.source().aggregation(AggregationBuilders .terms("brandAgg") .field("brand") .size(100) ); request.source().aggregation(AggregationBuilders .terms("cityAgg") .field("city") .size(100) ); request.source().aggregation(AggregationBuilders .terms("starAgg") .field("starName") .size(100) ); } private List<String> getAggByName(Aggregations aggregations, String aggName) { // 4.1.根据聚合名称获取聚合结果 Terms brandTerms = aggregations.get(aggName); // 4.2.获取buckets List<? extends Terms.Bucket> buckets = brandTerms.getBuckets(); // 4.3.遍历 List<String> brandList = new ArrayList<>(); for (Terms.Bucket bucket : buckets) { // 4.4.获取key String key = bucket.getKeyAsString(); brandList.add(key); } return brandList; }
11. 自动补全
当用户在搜索框输入字符时,我们应该提示出与该字符有关的搜索项,如图:
这种根据用户输入的字母,提示完整词条的功能,就是自动补全了。
因为需要根据拼音字母来推断,因此要用到拼音分词功能。
11.1 拼音分词器
要实现根据字母做补全,就必须对文档按照拼音分词。在GitHub上恰好有elasticsearch的拼音分词插件。地址:https://github.com/medcl/elasticsearch-analysis-pinyin
安装方式与IK分词器一样,分三步:
①解压
②上传到虚拟机中,elasticsearch的plugin目录
③重启elasticsearch
④测试
测试用法如下:
POST /_analyze { "text": "如家酒店还不错", "analyzer": "pinyin" }
结果:
11.2 自定义分词器
默认的拼音分词器会将每个汉字单独分为拼音,而我们希望的是每个词条形成一组拼音,需要对拼音分词器做个性化定制,形成自定义分词器。
elasticsearch中分词器(analyzer)的组成包含三部分:
- character filters:在tokenizer之前对文本进行处理。例如删除字符、替换字符
- tokenizer:将文本按照一定的规则切割成词条(term)。例如keyword,就是不分词;还有ik_smart
- tokenizer filter:将tokenizer输出的词条做进一步处理。例如大小写转换、同义词处理、拼音处理等
文档分词时会依次由这三部分来处理文档:
声明自定义分词器的语法如下:
PUT /test { "settings": { "analysis": { "analyzer": { // 自定义分词器 "my_analyzer": { // 分词器名称 "tokenizer": "ik_max_word", "filter": "py" } }, "filter": { // 自定义tokenizer filter "py": { // 过滤器名称 "type": "pinyin", // 过滤器类型,这里是pinyin "keep_full_pinyin": false, "keep_joined_full_pinyin": true, "keep_original": true, "limit_first_letter_length": 16, "remove_duplicated_term": true, "none_chinese_pinyin_tokenize": false } } } }, "mappings": { "properties": { "name": { "type": "text", "analyzer": "my_analyzer", "search_analyzer": "ik_smart" } } } }
测试:
总结:
如何使用拼音分词器?
①下载pinyin分词器
②解压并放到elasticsearch的plugin目录
③重启即可
如何自定义分词器?
①创建索引库时,在settings中配置,可以包含三部分
②character filter
③tokenizer
④filter
拼音分词器注意事项?
- 为了避免搜索到同音字,搜索时不要使用拼音分词器
11.3 自动补全查询
elasticsearch提供了Completion Suggester查询来实现自动补全功能。这个查询会匹配以用户输入内容开头的词条并返回。为了提高补全查询的效率,对于文档中字段的类型有一些约束:
参与补全查询的字段必须是completion类型。
字段的内容一般是用来补全的多个词条形成的数组。
比如,一个这样的索引库:
// 创建索引库 PUT test { "mappings": { "properties": { "title":{ "type": "completion" } } } }
然后插入下面的数据:
// 示例数据 POST test/_doc { "title": ["Sony", "WH-1000XM3"] } POST test/_doc { "title": ["SK-II", "PITERA"] } POST test/_doc { "title": ["Nintendo", "switch"] }
查询的DSL语句如下:
// 自动补全查询 GET /test/_search { "suggest": { "title_suggest": { "text": "s", // 关键字 "completion": { "field": "title", // 补全查询的字段 "skip_duplicates": true, // 跳过重复的 "size": 10 // 获取前10条结果 } } } }
11.4 实现酒店搜索框自动补全
现在,我们的hotel索引库还没有设置拼音分词器,需要修改索引库中的配置。但是我们知道索引库是无法修改的,只能删除然后重新创建。
另外,我们需要添加一个字段,用来做自动补全,将brand、suggestion、city等都放进去,作为自动补全的提示。
因此,总结一下,我们需要做的事情包括:
修改hotel索引库结构,设置自定义拼音分词器
修改索引库的name、all字段,使用自定义分词器
索引库添加一个新字段suggestion,类型为completion类型,使用自定义的分词器
给HotelDoc类添加suggestion字段,内容包含brand、business
重新导入数据到hotel库
11.4.1 修改酒店映射结构
代码如下:
// 酒店数据索引库 PUT /hotel { "settings": { "analysis": { "analyzer": { "text_anlyzer": { "tokenizer": "ik_max_word", "filter": "py" }, "completion_analyzer": { "tokenizer": "keyword", "filter": "py" } }, "filter": { "py": { "type": "pinyin", "keep_full_pinyin": false, "keep_joined_full_pinyin": true, "keep_original": true, "limit_first_letter_length": 16, "remove_duplicated_term": true, "none_chinese_pinyin_tokenize": false } } } }, "mappings": { "properties": { "id":{ "type": "keyword" }, "name":{ "type": "text", "analyzer": "text_anlyzer", "search_analyzer": "ik_smart", "copy_to": "all" }, "address":{ "type": "keyword", "index": false }, "price":{ "type": "integer" }, "score":{ "type": "integer" }, "brand":{ "type": "keyword", "copy_to": "all" }, "city":{ "type": "keyword" }, "starName":{ "type": "keyword" }, "business":{ "type": "keyword", "copy_to": "all" }, "location":{ "type": "geo_point" }, "pic":{ "type": "keyword", "index": false }, "all":{ "type": "text", "analyzer": "text_anlyzer", "search_analyzer": "ik_smart" }, "suggestion":{ "type": "completion", "analyzer": "completion_analyzer" } } } }
11.4.2 修改HotelDoc实体
HotelDoc中要添加一个字段,用来做自动补全,内容可以是酒店品牌、城市、商圈等信息。按照自动补全字段的要求,最好是这些字段的数组。
因此我们在HotelDoc中添加一个suggestion字段,类型为
List<String>
,然后将brand、city、business等信息放到里面。代码如下:
package cn.itcast.hotel.pojo; import lombok.Data; import lombok.NoArgsConstructor; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.List; @Data @NoArgsConstructor public class HotelDoc { private Long id; private String name; private String address; private Integer price; private Integer score; private String brand; private String city; private String starName; private String business; private String location; private String pic; private Object distance; private Boolean isAD; private List<String> suggestion; public HotelDoc(Hotel hotel) { this.id = hotel.getId(); this.name = hotel.getName(); this.address = hotel.getAddress(); this.price = hotel.getPrice(); this.score = hotel.getScore(); this.brand = hotel.getBrand(); this.city = hotel.getCity(); this.starName = hotel.getStarName(); this.business = hotel.getBusiness(); this.location = hotel.getLatitude() + ", " + hotel.getLongitude(); this.pic = hotel.getPic(); // 组装suggestion if(this.business.contains("/")){ // business有多个值,需要切割 String[] arr = this.business.split("/"); // 添加元素 this.suggestion = new ArrayList<>(); this.suggestion.add(this.brand); Collections.addAll(this.suggestion, arr); }else { this.suggestion = Arrays.asList(this.brand, this.business); } } }
11.4.3 重新导入
重新执行之前编写的导入数据功能,可以看到新的酒店数据中包含了suggestion:
11.4.4 自动补全查询的JavaAPI
自动补全查询的DSL,对应的JavaAPI,这里给出一个示例:
而自动补全的结果也比较特殊,解析的代码如下:
11.4.5 实现搜索框自动补全
查看前端页面,可以发现当我们在输入框键入时,前端会发起ajax请求:
返回值是补全词条的集合,类型为
List<String>
1)在
cn.itcast.hotel.web
包下的HotelController
中添加新接口,接收新的请求:@GetMapping("suggestion") public List<String> getSuggestions(@RequestParam("key") String prefix) { return hotelService.getSuggestions(prefix); }
2)在
cn.itcast.hotel.service
包下的IhotelService
中添加方法:List<String> getSuggestions(String prefix);
3)在
cn.itcast.hotel.service.impl.HotelService
中实现该方法:@Override public List<String> getSuggestions(String prefix) { try { // 1.准备Request SearchRequest request = new SearchRequest("hotel"); // 2.准备DSL request.source().suggest(new SuggestBuilder().addSuggestion( "suggestions", SuggestBuilders.completionSuggestion("suggestion") .prefix(prefix) .skipDuplicates(true) .size(10) )); // 3.发起请求 SearchResponse response = client.search(request, RequestOptions.DEFAULT); // 4.解析结果 Suggest suggest = response.getSuggest(); // 4.1.根据补全查询名称,获取补全结果 CompletionSuggestion suggestions = suggest.getSuggestion("suggestions"); // 4.2.获取options List<CompletionSuggestion.Entry.Option> options = suggestions.getOptions(); // 4.3.遍历 List<String> list = new ArrayList<>(options.size()); for (CompletionSuggestion.Entry.Option option : options) { String text = option.getText().toString(); list.add(text); } return list; } catch (IOException e) { throw new RuntimeException(e); } }
12. 数据同步
elasticsearch中的酒店数据来自于mysql数据库,因此mysql数据发生改变时,elasticsearch也必须跟着改变,这个就是elasticsearch与mysql之间的数据同步。
12.1 思路分析
常见的数据同步方案有三种:
- 同步调用
- 异步通知
- 监听binlog
12.1.1 同步调用
方案一:同步调用
基本步骤如下:
- hotel-demo对外提供接口,用来修改elasticsearch中的数据
- 酒店管理服务在完成数据库操作后,直接调用hotel-demo提供的接口
12.1.2 异步通知
方案二:异步通知
流程如下:
- hotel-admin对mysql数据库数据完成增、删、改后,发送MQ消息
- hotel-demo监听MQ,接收到消息后完成elasticsearch数据修改
12.1.3.监听binlog
方案三:监听binlog
流程如下:
- 给mysql开启binlog功能
- mysql完成增、删、改操作都会记录在binlog中
- hotel-demo基于canal监听binlog变化,实时更新elasticsearch中的内容
12.1.4 选择
方式一:同步调用
- 优点:实现简单,粗暴
- 缺点:业务耦合度高
方式二:异步通知
- 优点:低耦合,实现难度一般
- 缺点:依赖mq的可靠性
方式三:监听binlog
- 优点:完全解除服务间耦合
- 缺点:开启binlog增加数据库负担、实现复杂度高
12.2 实现数据同步
12.2.1 思路
利用课前资料提供的hotel-admin项目作为酒店管理的微服务。当酒店数据发生增、删、改时,要求对elasticsearch中数据也要完成相同操作。
步骤:
- 导入课前资料提供的hotel-admin项目,启动并测试酒店数据的CRUD
- 声明exchange、queue、RoutingKey
- 在hotel-admin中的增、删、改业务中完成消息发送
- 在hotel-demo中完成消息监听,并更新elasticsearch中数据
- 启动并测试数据同步功能
12.2.2 导入demo
导入hotel-admin项目:
运行后,访问 http://localhost:8099
其中包含了酒店的CRUD功能:
12.2.3 声明交换机、队列
MQ结构如图:
1)引入依赖
在hotel-admin、hotel-demo中引入rabbitmq的依赖:
<!--amqp--> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-amqp</artifactId> </dependency>
2)声明队列交换机名称
在hotel-admin和hotel-demo中的
cn.itcast.hotel.constatnts
包下新建一个类MqConstants
:package cn.itcast.hotel.constatnts; public class MqConstants { /** * 交换机 */ public final static String HOTEL_EXCHANGE = "hotel.topic"; /** * 监听新增和修改的队列 */ public final static String HOTEL_INSERT_QUEUE = "hotel.insert.queue"; /** * 监听删除的队列 */ public final static String HOTEL_DELETE_QUEUE = "hotel.delete.queue"; /** * 新增或修改的RoutingKey */ public final static String HOTEL_INSERT_KEY = "hotel.insert"; /** * 删除的RoutingKey */ public final static String HOTEL_DELETE_KEY = "hotel.delete"; }
3)声明队列交换机
在hotel-demo中,定义配置类,声明队列、交换机:
package cn.itcast.hotel.config; import cn.itcast.hotel.constants.MqConstants; import org.springframework.amqp.core.Binding; import org.springframework.amqp.core.BindingBuilder; import org.springframework.amqp.core.Queue; import org.springframework.amqp.core.TopicExchange; import org.springframework.context.annotation.Bean; import org.springframework.context.annotation.Configuration; @Configuration public class MqConfig { @Bean public TopicExchange topicExchange(){ return new TopicExchange(MqConstants.HOTEL_EXCHANGE, true, false); } @Bean public Queue insertQueue(){ return new Queue(MqConstants.HOTEL_INSERT_QUEUE, true); } @Bean public Queue deleteQueue(){ return new Queue(MqConstants.HOTEL_DELETE_QUEUE, true); } @Bean public Binding insertQueueBinding(){ return BindingBuilder.bind(insertQueue()).to(topicExchange()).with(MqConstants.HOTEL_INSERT_KEY); } @Bean public Binding deleteQueueBinding(){ return BindingBuilder.bind(deleteQueue()).to(topicExchange()).with(MqConstants.HOTEL_DELETE_KEY); } }
12.2.4 发送MQ消息
在hotel-admin中的增、删、改业务中分别发送MQ消息:
12.2.5 接收MQ消息
hotel-demo接收到MQ消息要做的事情包括:
- 新增消息:根据传递的hotel的id查询hotel信息,然后新增一条数据到索引库
- 删除消息:根据传递的hotel的id删除索引库中的一条数据
1)首先在hotel-demo的
cn.itcast.hotel.service
包下的IHotelService
中新增新增、删除业务void deleteById(Long id); void insertById(Long id);
2)给hotel-demo中的
cn.itcast.hotel.service.impl
包下的HotelService中实现业务:@Override public void deleteById(Long id) { try { // 1.准备Request DeleteRequest request = new DeleteRequest("hotel", id.toString()); // 2.发送请求 client.delete(request, RequestOptions.DEFAULT); } catch (IOException e) { throw new RuntimeException(e); } } @Override public void insertById(Long id) { try { // 0.根据id查询酒店数据 Hotel hotel = getById(id); // 转换为文档类型 HotelDoc hotelDoc = new HotelDoc(hotel); // 1.准备Request对象 IndexRequest request = new IndexRequest("hotel").id(hotel.getId().toString()); // 2.准备Json文档 request.source(JSON.toJSONString(hotelDoc), XContentType.JSON); // 3.发送请求 client.index(request, RequestOptions.DEFAULT); } catch (IOException e) { throw new RuntimeException(e); } }
3)编写监听器
在hotel-demo中的
cn.itcast.hotel.mq
包新增一个类:package cn.itcast.hotel.mq; import cn.itcast.hotel.constants.MqConstants; import cn.itcast.hotel.service.IHotelService; import org.springframework.amqp.rabbit.annotation.RabbitListener; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.stereotype.Component; @Component public class HotelListener { @Autowired private IHotelService hotelService; /** * 监听酒店新增或修改的业务 * @param id 酒店id */ @RabbitListener(queues = MqConstants.HOTEL_INSERT_QUEUE) public void listenHotelInsertOrUpdate(Long id){ hotelService.insertById(id); } /** * 监听酒店删除的业务 * @param id 酒店id */ @RabbitListener(queues = MqConstants.HOTEL_DELETE_QUEUE) public void listenHotelDelete(Long id){ hotelService.deleteById(id); } }
13. 集群
单机的elasticsearch做数据存储,必然面临两个问题:海量数据存储问题、单点故障问题。
- 海量数据存储问题:将索引库从逻辑上拆分为N个分片(shard),存储到多个节点
- 单点故障问题:将分片数据在不同节点备份(replica )
ES集群相关概念:
- 集群(cluster):一组拥有共同的 cluster name 的 节点。
- 节点(node) :集群中的一个 Elasticearch 实例
- 分片(shard):索引可以被拆分为不同的部分进行存储,称为分片。在集群环境下,一个索引的不同分片可以拆分到不同的节点中
解决问题:数据量太大,单点存储量有限的问题。
此处,我们把数据分成3片:shard0、shard1、shard2
- 主分片(Primary shard):相对于副本分片的定义。
- 副本分片(Replica shard)每个主分片可以有一个或者多个副本,数据和主分片一样。
数据备份可以保证高可用,但是每个分片备份一份,所需要的节点数量就会翻一倍,成本实在是太高了!
为了在高可用和成本间寻求平衡,我们可以这样做:
- 首先对数据分片,存储到不同节点
- 然后对每个分片进行备份,放到对方节点,完成互相备份
这样可以大大减少所需要的服务节点数量,如图,我们以3分片,每个分片备份一份为例:
现在,每个分片都有1个备份,存储在3个节点:
- node0:保存了分片0和1
- node1:保存了分片0和2
- node2:保存了分片1和2
13.1 搭建ES集群
在单机上利用docker容器运行多个es实例来模拟es集群。不过生产环境推荐大家每一台服务节点仅部署一个es的实例。
13.1.1 部署es集群
部署es集群可以直接使用docker-compose来完成,不过要求你的Linux虚拟机至少有4G的内存空间
首先编写一个docker-compose文件,内容如下:
version: '2.2' services: es01: image: docker.elastic.co/elasticsearch/elasticsearch:7.12.1 container_name: es01 environment: - node.name=es01 - cluster.name=es-docker-cluster - discovery.seed_hosts=es02,es03 - cluster.initial_master_nodes=es01,es02,es03 - bootstrap.memory_lock=true - "ES_JAVA_OPTS=-Xms512m -Xmx512m" ulimits: memlock: soft: -1 hard: -1 volumes: - data01:/usr/share/elasticsearch/data ports: - 9200:9200 networks: - elastic es02: image: docker.elastic.co/elasticsearch/elasticsearch:7.12.1 container_name: es02 environment: - node.name=es02 - cluster.name=es-docker-cluster - discovery.seed_hosts=es01,es03 - cluster.initial_master_nodes=es01,es02,es03 - bootstrap.memory_lock=true - "ES_JAVA_OPTS=-Xms512m -Xmx512m" ulimits: memlock: soft: -1 hard: -1 volumes: - data02:/usr/share/elasticsearch/data networks: - elastic es03: image: docker.elastic.co/elasticsearch/elasticsearch:7.12.1 container_name: es03 environment: - node.name=es03 - cluster.name=es-docker-cluster - discovery.seed_hosts=es01,es02 - cluster.initial_master_nodes=es01,es02,es03 - bootstrap.memory_lock=true - "ES_JAVA_OPTS=-Xms512m -Xmx512m" ulimits: memlock: soft: -1 hard: -1 volumes: - data03:/usr/share/elasticsearch/data networks: - elastic volumes: data01: driver: local data02: driver: local data03: driver: local networks: elastic: driver: bridge
es运行需要修改一些linux系统权限,修改
/etc/sysctl.conf
文件vi /etc/sysctl.conf
添加下面的内容:
vm.max_map_count=262144
然后执行命令,让配置生效:
sysctl -p
通过docker-compose启动集群:
docker-compose up -d
13.1.2 集群状态监控
kibana可以监控es集群,不过新版本需要依赖es的x-pack 功能,配置比较复杂。
这里推荐使用cerebro来监控es集群状态,官方网址:https://github.com/lmenezes/cerebro
解压即可使用(cerebro-x.x.x.zip),非常方便。
解压好的目录如下:
进入对应的bin目录:
双击其中的cerebro.bat文件即可启动服务。访问http://localhost:9000 即可进入管理界面:
输入你的elasticsearch的任意节点的地址和端口,点击connect即可:
绿色的条,代表集群处于绿色(健康状态)。
13.3 创建索引库
1)利用kibana的DevTools创建索引库
在DevTools中输入指令:
PUT /itcast { "settings": { "number_of_shards": 3, // 分片数量 "number_of_replicas": 1 // 副本数量 }, "mappings": { "properties": { // mapping映射定义 ... } } }
2)利用cerebro创建索引库
利用cerebro还可以创建索引库:
填写索引库信息:
点击右下角的create按钮:
文章来源:https://www.toymoban.com/news/detail-564021.html
13.4 查看分片效果
回到首页,即可查看索引库分片效果:
文章来源地址https://www.toymoban.com/news/detail-564021.html
到了这里,关于【学习日记2023.6.25】之ElasticSearch搜索引擎的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!