Self-Attention && Cross-Attention

这篇具有很好参考价值的文章主要介绍了Self-Attention && Cross-Attention。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

Self-Attention && Cross-Attention,transformer,深度学习,人工智能

transformer的细节到底是怎么样的?Transformer 连环18问!

4.1 从功能角度,Transformer Encoder的核心作用是提取特征,也有使用Transformer Decoder来提取特征。例如,一个人学习跳舞,Encoder是看别人是如何跳舞的,Decoder是将学习到的经验和记忆,展现出来

4.2 从结构角度,如图5所示,Transformer Encoder = Embedding + Positional Embedding + N*(子Encoder block1 + 子Encoder block2);

子Encoder block1 = Multi head attention + ADD + Norm;

子Encoder block2 = Feed Forward + ADD + Norm;

4.3 从输入输出角度,N个Transformer Encoder block中的第一个Encoder block的输入为一组向量 X = (Embedding + Positional Embedding),向量维度通常为512*512,其他N个TransformerEncoder block的输入为上一个 Transformer Encoder block的输出,输出向量的维度也为512*512(输入输出大小相同)。

4.4 为什么是512*512?前者是指token的个数,如“我爱学习”是4个token,这里设置为512是为了囊括不同的序列长度,不够时padding。后者是指每一个token生成的向量维度,也就是每一个token使用一个序列长度为512的向量表示。人们常说,Transformer不能超过512,否则硬件很难支撑;其实512是指前者,也就是token的个数,因为每一个token要做self attention操作;但是后者的512不宜过大,否则计算起来也很慢。

Self-Attention && Cross-Attention,transformer,深度学习,人工智能

5.1 从功能角度,相比于Transformer Encoder,Transformer Decoder更擅长做生成式任务,尤其对于自然语言处理问题。

5.2 从结构角度,如图6所示,Transformer Decoder = Embedding + Positional Embedding + N*(子Decoder block1 + 子Decoder block2 + 子Decoder block3)+ Linear + Softmax;

子Decoder block1 = Mask Multi head attention + ADD + Norm;

子Decoder block2 = Multi head attention + ADD + Norm;

子Decoder block3 = Feed Forward + ADD + Norm;

5.3 从(Embedding+Positional Embedding)(N个Decoder block)(Linear + softmax) 这三个每一个单独作用角度:

Embedding + Positional Embedding :以机器翻译为例,输入“Machine Learning”,输出“机器学习”;这里的Embedding是把“机器学习”也转化成向量的形式。

N个Decoder block:特征处理和传递过程。

Linear + softmax:softmax是预测下一个词出现的概率,如图7所示,前面的Linear层类似于分类网络(ResNet18)最后分类层前接的MLP层。

Self-Attention && Cross-Attention,transformer,深度学习,人工智能

6. Transformer Encoder和Transformer

Decoder有哪些不同?

6.1 作用上,Transformer Encoder常用来提取特征,Transformer Decoder常用于生成式任务。Transformer Encoder和Transformer Decoder是两条不同的技术路线,Bert采用的前者,GPT系列模型采用的是后者。

6.2 结构上,Transformer Decoder block包括了3个子Decoder block,而Transformer Encoder block 包括2个子Encoder block,且Transformer Decoder中使用了Mask multi-head Attention。

6.3 从二者的输入输出角度,N个Transformer Encoder运算完成之后,它的输出才正式输入进Transformer Decoder,作为QKV中的K和V,给Transformer Decoder使用。那么TransformerEncoder最后层的输出是如何送给Decoder呢?

7. 什么是Embedding?

7.1 Embedding在Transformer架构中的位置如图13所示。

7.2 提出背景: 计算机无法直接处理一个单词或者一个汉字,需要把一个token转化成计算机可以识别的向量,这也就是embedding过程。

7.3 实现方式: 最简单的embedding操作就是one hot vector,但one hot vector有一个弊端就是没有考虑词语前后之间的关系,后来也就产生了WordEmbedding,如图13。

What is cross-attention, and how does it differ from self-attention?

In self-attention, we work with the same input sequence. In cross-attention, we mix or combine two different input sequences. In the case of the original transformer architecture above, that’s the sequence returned by the encoder module on the left and the input sequence being processed by the decoder part on the right.

Note that in cross-attention, the two input sequences \(\mathbf{x}_1\) and \(\mathbf{x}_2\) can have different numbers of elements. However, their embedding dimensions must match.

The figure below illustrates the concept of cross-attention. If we set \(\mathbf{x}_1 = \mathbf{x}_2\), this is equivalent to self-attention.

Self-Attention && Cross-Attention,transformer,深度学习,人工智能

下面是Cross-Attention

 Self-Attention && Cross-Attention,transformer,深度学习,人工智能

(Note that the queries usually come from the decoder, and the keys and values usually come from the encoder.)文章来源地址https://www.toymoban.com/news/detail-564113.html

到了这里,关于Self-Attention && Cross-Attention的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 自注意力(Self-Attention)与Multi-Head Attention机制详解

      自注意力机制属于注意力机制之一。与传统的注意力机制作用相同,自注意力机制可以更多地关注到输入中的关键信息。self-attention可以看成是multi-head attention的输入数据相同时的一种特殊情况。所以理解self attention的本质实际上是了解multi-head attention结构。   对于一个mul

    2024年02月02日
    浏览(42)
  • self-attention为什么要除以根号d_k

    self-attention的公式为 a t t e n t i o n ( Q , K , V ) = S o f t m a x ( Q K d k ) V attention(Q,K,V)=Softmax( frac{QK}{sqrt{d_{k}}})V a tt e n t i o n ( Q , K , V ) = S o f t ma x ( d k ​ ​ Q K ​ ) V 个人理解,除以 d k sqrt{d_{k}} d k ​ ​ 的原因有两点: d k d_{k} d k ​ 是词向量/隐藏层的维度 1、首先要除以一个数

    2023年04月10日
    浏览(38)
  • 层层剖析,让你彻底搞懂Self-Attention、MultiHead-Attention和Masked-Attention的机制和原理

    本文基于李宏毅老师对 Self-Attention 的讲解,进行理解和补充,并结合Pytorch代码,最终目的是使得自己和各位读者更好的理解 Self-Attention 李宏毅Self-Attention链接: https://www.youtube.com/watch?v=hYdO9CscNes PPT链接见视频下方 通过本文的阅读,你可以获得以下知识: 什么是Self-Attention,为

    2024年02月02日
    浏览(47)
  • 相对位置编码之RPR式:《Self-Attention with Relative Position Representations》论文笔记

    😄 额,本想学学XLNet的,然后XLNet又是以transformer-XL为主要结构,然后transformer-XL做了两个改进:一个是结构上做了segment-level的循环机制,一个是在attention机制里引入了相对位置编码信息来避免不同segment的同一位置采用相同的绝对位置编码的不合理。但无奈看到相对位置编码

    2024年02月17日
    浏览(41)
  • Transformer的Q、K、V和Mutil-Head Self-Attention(超详细解读)

    目录 一.什么是Q、K、V 二.Mutil-Head Self-Attention Transformer大行其道,在众多领域取得了不可忽视的成就。如今大火的语言大模型LLM也都是基于Transformer,但是Transformer中的Q、K、V和多头注意力到底是什么呢?这里简单做个学习记录,进行再一次认识和掌握。 Transformer中的Q、K和

    2024年02月06日
    浏览(32)
  • NLP入门:word2vec & self-attention & transformer & diffusion的技术演变

    这一段时间大模型的相关进展如火如荼,吸引了很多人的目光;本文从nlp领域入门的角度来总结相关的技术路线演变路线。 1、introduction 自然语言处理(Natural Language Processing),简称NLP,是通过统计学、数学模型、机器学习等相关技术研究人类语言的特征,对其进行数学的表

    2024年02月11日
    浏览(55)
  • 【读点论文】Separable Self-attention for Mobile Vision Transformers,通过引入隐变量将Q矩阵和K矩阵的算数复杂度降低成线性复杂度,分步计算注意力。

    移动视觉transformer(MobileViT)可以在多个移动视觉任务中实现最先进的性能,包括分类和检测。虽然这些模型的参数较少, 但与基于卷积神经网络的模型相比,它们具有较高的延迟 。MobileViT的主要效率瓶颈是transformer中的多头自我注意(MHA),相对于令牌(或补丁)的数量k,它需要

    2023年04月16日
    浏览(36)
  • 学习Transformer前言(Self Attention Multi head self attention)

    一直在做项目,也比较懒没有挤出时间去学习新的东西,感觉停滞很久了,好长一段时间都没有新的知识输入,早就需要就去学习transformer了,因此先来学习注意力机制,本文为个人的一个笔记总结。主要是基于李宏毅老师的一个课程视频笔记,论文原文,加上B站UP主的霹雳

    2024年02月02日
    浏览(54)
  • 图解cross attention

     英文参考链接: https://vaclavkosar.com/ml/cross-attention-in-transformer-architecture 除了输入,cross-attention 计算与self-attention相同。交叉注意力不对称地组合了两个相同维度的独立嵌入序列,相比之下,自注意力输入是一个单一的嵌入序列。其中一个序列用作查询输入,而另一个用作键

    2024年01月16日
    浏览(40)
  • 【科研】浅学Cross-attention?

    Cross-Attention in Transformer Architecture  最近,CrossViT让我所有思考,这种能过够跨膜态的模型构建?浅学一下吧! 目录 1.Cross attention概念 2.Cross-attention vs Self-attention  3.Cross-attention算法  4.Cross-Attention 案例-感知器IO Transformer架构中混合两种不同嵌入序列的注意机制 两个序列 必须具

    2024年02月04日
    浏览(51)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包