RGB 模式的彩色图像在读入 OpenCV 内进行处理时,会按照行方向依次读取该 RGB 图像的 B 通道、G 通道、R 通道的像素点,并将像素点以行为单位存储在 ndarray 的列中。例如,
有一幅大小为 R 行×C 列的原始 RGB 图像,其在 OpenCV 内以 BGR 模式的三维数组形式存储,
如图 2-7 所示
可以使用表达式访问数组内的值。例如,可以使用 image[0,0,0]访问图像 image 的 B 通道
内的第 0 行第 0 列上的像素点
第 1 个索引表示第 0 行。
第 2 个索引表示第 0 列。
第 3 个索引表示第 0 个颜色通道。
根据上述分析可知,假设有一个红色(其 R 通道值为 255,G 通道值为 0,B 通道值为 0)
图像,不同的访问方式得到的值如下。
img[0,0]:访问图像 img 第 0 行第 0 列像素点的 BGR 值。图像是 BGR 格式的,得到的数值为[0,0,255]。
img[0,0,0]:访问图像 img 第 0 行第 0 列第 0 个通道的像素值。图像是 BGR 格式的,所
以第 0 个通道是 B 通道,会得到 B 通道内第 0 行第 0 列的位置所对应的值 0。
img[0,0,1]:访问图像 img 第 0 行第 0 列第 1 个通道的像素值。图像是 BGR 格式的,所
以第 1 个通道是 G 通道,会得到 G 通道内第 0 行第 0 列的位置所对应的值 0。
img[0,0,2]:访问图像 img 第 0 行第 0 列第 2 个通道的像素值。图像是 BGR 格式的,所
以第 2 个通道是 R 通道,会得到 R 通道内第 0 行第 0 列的位置所对应的值 255
为了方便理解,我们首先使用 Numpy 库来生成一个 2×4×3 大小的数组,用它模拟一幅黑
色图像,并对其进行简单处理
import cv2
import numpy as np
#-----------蓝色通道值--------------
blue=np.zeros((300,300,3),dtype=np.uint8)
blue[:,:,0]=255
print("blue=\n",blue)
cv2.imshow("blue",blue)
#-----------绿色通道值--------------
green=np.zeros((300,300,3),dtype=np.uint8)
green[:,:,1]=255
print("green=\n",green)
cv2.imshow("green",green)
#-----------红色通道值--------------
red=np.zeros((300,300,3),dtype=np.uint8)
red[:,:,2]=255
print("red=\n",red)
cv2.imshow("red",red)
cv2.waitKey(0)
cv2.destroyAllWindows()
运行后打印效果:
opencv 中对应的BGR,刚好是蓝色,绿色,红色的顺序
运行上述程序,会显示颜色为蓝色、绿色、红色的三幅图像,分别对应数组 blue、数组 green、数组 red
将三种颜色在一张图中演示操作
import cv2
import numpy as np
img=np.zeros((300,300,3),dtype=np.uint8)
img[:,0:100,0]=255
img[:,100:200,1]=255
img[:,200:300,2]=255
print("img=\n",img)
cv2.imshow("image",img)
cv2.waitKey(0)
cv2.destroyAllWindows()
img[:,0:100,0]=255
从上面我们已经知道 第一索引是 矩阵里的行,:代表着满行,第二个值0:100 ,代表这 0到100列,第三索引 是通道值,按照opencv 读取顺序是B,
运行效果:文章来源:https://www.toymoban.com/news/detail-567316.html
文章来源地址https://www.toymoban.com/news/detail-567316.html
到了这里,关于opencv 05 彩色RGB像素值操作的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!