论文阅读-2:基于深度学习的大尺度遥感图像建筑物分割研究

这篇具有很好参考价值的文章主要介绍了论文阅读-2:基于深度学习的大尺度遥感图像建筑物分割研究。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、该网络中采用了上下文信息捕获模块。通过扩大感受野,在保留细节信息的同时,在中心部分进行多尺度特征的融合,缓解了传统算法中细节信息丢失的问题;通过自适应地融合局部语义特征,该网络在空间特征和通道特征之间建立长距离的依赖关系;

二、分割网络:边缘提取网络+细节优化网络

E-net 

论文阅读-2:基于深度学习的大尺度遥感图像建筑物分割研究,深度学习,论文阅读,人工智能D-net

将原始图像与 E-Net 的 3 通道分割结果作为 D-Net 的 6 通道输入进行级联

论文阅读-2:基于深度学习的大尺度遥感图像建筑物分割研究,深度学习,论文阅读,人工智能文章来源地址https://www.toymoban.com/news/detail-568097.html

到了这里,关于论文阅读-2:基于深度学习的大尺度遥感图像建筑物分割研究的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 深度学习中的图像融合:图像融合论文阅读与实战

    个人博客 :Sekyoro的博客小屋 个人网站 :Proanimer的个人网站 介绍图像融合概念,回顾sota模型,其中包括数字摄像图像融合,多模态图像融合, 接着评估一些代表方法 介绍一些常见应用,比如RGBT目标跟踪,医学图像检查,遥感监测 动机: 由于硬件设备的理论和技术限制,单一

    2024年02月02日
    浏览(58)
  • 深度学习目标检测项目实战(六)-基于Faster rcnn pytorch的遥感图像检测

    代码:https://github.com/jwyang/faster-rcnn.pytorch/tree/pytorch-1.0 使用RSOD遥感数据集,VOC的数据格式如下: RSOD是一个开放的目标检测数据集,用于遥感图像中的目标检测。数据集包含飞机,油箱,运动场和立交桥,以PASCAL VOC数据集的格式进行标注。 数据集包括4个文件夹,每个文件夹

    2024年02月06日
    浏览(71)
  • 【论文阅读】Swin Transformer Embedding UNet用于遥感图像语义分割

    Swin Transformer Embedding UNet for Remote Sensing Image Semantic Segmentation 全局上下文信息是遥感图像语义分割的关键 具有强大全局建模能力的Swin transformer 提出了一种新的RS图像语义分割框架ST-UNet型网络(UNet) 解决方案:将Swin transformer嵌入到经典的基于cnn的UNet中 ST-UNet由Swin变压器和CNN并联

    2024年02月08日
    浏览(61)
  • 论文阅读——基于深度学习智能垃圾分类

    B. Fu, S. Li, J. Wei, Q. Li, Q. Wang and J. Tu, “A Novel Intelligent Garbage Classification System Based on Deep Learning and an Embedded Linux System,” in IEEE Access, vol. 9, pp. 131134-131146, 2021, doi: 10.1109/ACCESS.2021.3114496. 垃圾数量的急剧增加和垃圾中物质的复杂多样性带来了严重的环境污染和资源浪费问题。回收

    2024年02月11日
    浏览(45)
  • 论文阅读-FCD-Net: 学习检测多类型同源深度伪造人脸图像

    一、论文信息 论文题目: FCD-Net: Learning to Detect Multiple Types of Homologous Deepfake Face Images 作者团队: Ruidong Han , Xiaofeng Wang , Ningning Bai, Qin Wang, Zinian Liu, and Jianru Xue (西安理工大学,西安交通大学) 论文网址: FCD-Net: Learning to Detect Multiple Types of Homologous Deepfake Face Images | IEEE Jou

    2024年02月06日
    浏览(61)
  • 图像处理之《寻找和隐藏:通过深度强化学习的对抗隐写术》论文阅读

    一、文章摘要 图像隐写术的目的是将一个完整大小的图像(称为秘密)隐藏到另一个图像(称为封面)中。以往的图像隐写算法只能在一个封面中隐藏一个秘密。在这篇论文中, 我们提出了一个自适应局部图像隐写(AdaSteg)系统,允许缩放和位置自适应图像隐写 。该系统通过在局部

    2024年03月14日
    浏览(54)
  • 【论文阅读】基于深度学习的时序预测——Autoformer

    系列文章链接 论文一:2020 Informer:长时序数据预测 论文二:2021 Autoformer:长序列数据预测 论文三:2022 FEDformer:长序列数据预测 论文四:2022 Non-Stationary Transformers:非平稳性时序预测 论文五:2022 Pyraformer:基于金字塔图结构的时序预测 论文六:2023 Crossformer:多变量时序预

    2024年02月13日
    浏览(43)
  • 【论文阅读】基于深度学习的时序预测——Crossformer

    系列文章链接 论文一:2020 Informer:长时序数据预测 论文二:2021 Autoformer:长序列数据预测 论文三:2022 FEDformer:长序列数据预测 论文四:2022 Non-Stationary Transformers:非平稳性时序预测 论文五:2022 Pyraformer:基于金字塔图结构的时序预测 论文六:2023 Crossformer:多变量时序预

    2024年02月13日
    浏览(46)
  • 【论文阅读】基于深度学习的时序预测——FEDformer

    系列文章链接 论文一:2020 Informer:长时序数据预测 论文二:2021 Autoformer:长序列数据预测 论文三:2022 FEDformer:长序列数据预测 论文四:2022 Non-Stationary Transformers:非平稳性时序预测 论文五:2022 Pyraformer:基于金字塔图结构的时序预测 论文六:2023 Crossformer:多变量时序预

    2024年02月13日
    浏览(39)
  • 【论文阅读】基于深度学习的时序预测——Pyraformer

    系列文章链接 论文一:2020 Informer:长时序数据预测 论文二:2021 Autoformer:长序列数据预测 论文三:2022 FEDformer:长序列数据预测 论文四:2022 Non-Stationary Transformers:非平稳性时序预测 论文五:2022 Pyraformer:基于金字塔图结构的时序预测 论文六:2023 Crossformer:多变量时序预

    2024年02月13日
    浏览(45)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包