【Hadoop 01】简介

这篇具有很好参考价值的文章主要介绍了【Hadoop 01】简介。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

1 Hadoop 简介

2 下载并配置Hadoop

2.1 修改/etc/profile

2.2 修改hadoop-env.sh

2.3 修改core-site.xml

2.4 修改hdfs-site.xml

2.5 修改mapred-site.xml

2.6 修改yarn-site.xml

2.7 修改workers

2.8 修改start-dfs.sh、stop-dfs.sh

2.9 修改start-yarn.sh、stop-yarn.sh

2.10 启动集群

3 HDFS

3.1 HDFS常见shell操作

3.2 HDFS实操案例

3.3 HDFS体系结构

3.4 DataNode总结

3.5 NameNode总结

3.6 HDFS的回收站

 3.7 HDFS的安全模式

 3.8 案例:定时上传文件到HDFS

 3.9 HDFS的高可用(HA)

 3.10 HDFS的高扩展(Federation)

4 MapReduce

4.1 Map阶段

4.2 Redeuce阶段

4.3 MapRedeuce任务日志查看

4.4 Shuffle原理

4.5 Shuffle原理

4.6 InputSplit原理

4.7 RecodReader原理


1 Hadoop 简介

Hadoop适合海量数据分布式存储和分布式计算

Hadoop 3.x的细节优化:

  • Java改为支持8及以上
  • HDFS支持纠删码
  • HDFS支持多NameNode
  • MR任务级本地优化
  • 多重服务默认端口变更

【Hadoop 01】简介,大数据,hadoop,大数据,分布式

Hadoop主要包含三大组件:HDFS+MapReduce+YARN

  • HDFS负责海量数据的分布式存储
  • MapReduce是一个计算模型,负责海量数据的分布式计算
  • YARN主要负责集群资源的管理和调度

2 下载并配置Hadoop

ssh-keygen -t rsa
cat ~/.ssh/id_rsa.pub  >> ~/.ssh/authorized_keys

【Hadoop 01】简介,大数据,hadoop,大数据,分布式

把 公钥 的内容 附加到 authorized_keys 里:

【Hadoop 01】简介,大数据,hadoop,大数据,分布式

修改hostname

su root
hostname bigdata01

第一次设置密码

【Hadoop 01】简介,大数据,hadoop,大数据,分布式

 更换主机名之后

【Hadoop 01】简介,大数据,hadoop,大数据,分布式

2.1 修改/etc/profile

vim /etc/profile

添加

export HADOOP_HOME=/data/soft/hadoop-3.2.0
export PATH=.:$HADOOP_HOME/sbin:$HADOOP_HOME/bin:$PATH

需要root权限

【Hadoop 01】简介,大数据,hadoop,大数据,分布式

等号前后不能有空格


 

java的环境也要有

wget --no-check-certificate --no-cookies --header "Cookie: oraclelicense=accept-securebackup-cookie"  http://download.oracle.com/otn-pub/java/jdk/8u131-b11/d54c1d3a095b4ff2b6607d096fa80163/jdk-8u131-linux-x64.tar.gz

 source一下使得环境变量生效

source /etc/profile

检查一下环境是否装好

【Hadoop 01】简介,大数据,hadoop,大数据,分布式

检查是否装好hadoop

【Hadoop 01】简介,大数据,hadoop,大数据,分布式

以下文件在{HADOOP_HOME}/etc/hadoop/目录下

2.2 修改hadoop-env.sh

JAVA_HOME是ubuntu系统自带的 log日志是自己建立的

export JAVA_HOME=/home/gdan/data/jdk-8u131-linux-x64/jdk1.8.0_131
export HADOOP_LOG_DIR=/home/gdan/data/soft/hadoop_repo/logs/hadoop

(注意这里 等号附近 前往不能有空格)

2.3 修改core-site.xml

<configuration>
    <property>
         <name>fs.defaultFS</name>
         <value>hdfs://bigdata01:9000</value>
     </property>
     <property>
         <name>hadoop.tmp.dir</name>
         <value>/data/hadoop_repo</value>
     </property>
    <property>
        <name>hadoop.http.staticuser.user</name>
        <value>root</value>
    </property>
</configuration>

2.4 修改hdfs-site.xml

<configuration>
    <property>
        <name>dfs.replication</name>
        <value>1</value>
    </property>
</configuration>

2.5 修改mapred-site.xml

<configuration>
    <property>
        <name>mapreduce.framework.name</name>
        <value>yarn</value>
    </property>
</configuration>

2.6 修改yarn-site.xml

<configuration>
    <property>
        <name>yarn.nodemanager.aux-services</name>
        <value>mapreduce_shuffle</value>
    </property>
    <property>
        <name>yarn.nodemanager.env-whitelist</name>
        <value>JAVA_HOME,HADOOP_COMMON_HOME,HADOOP_HDFS_HOME,HADOOP_CONF_DIR,CLASSPATH_PREPEND_DISTCACHE,HADOOP_YARN_HOME,HADOOP_MAPRED_HOME</value>
    </property>
</configuration>

2.7 修改workers

bigdata01

2.8 修改start-dfs.sh、stop-dfs.sh

在文件开头添加

HDFS_DATANODE_USER=root
HDFS_DATANODE_SECURE_USER=hdfs
HDFS_NAMENODE_USER=root
HDFS_SECONDARYNAMENODE_USER=root

2.9 修改start-yarn.sh、stop-yarn.sh

在文件开头添加

YARN_RESOURCEMANAGER_USER=root
HADOOP_SECURE_DN_USER=yarn
YARN_NODEMANAGER_USER=root

2.10 启动集群

第一次启动时,先初始化datanode,执行如下命令:

hdfs namenode -format

格式化操作

【Hadoop 01】简介,大数据,hadoop,大数据,分布式

【Hadoop 01】简介,大数据,hadoop,大数据,分布式

启动集群:(这里可能有一堆问题 例如openssh没有安装等等) 

【Hadoop 01】简介,大数据,hadoop,大数据,分布式

访问界面

  • HDFS webui界面:http://bigdata01:9870
  • YARN webui界面:http://bigdata01:8088

【Hadoop 01】简介,大数据,hadoop,大数据,分布式

 【Hadoop 01】简介,大数据,hadoop,大数据,分布式

3 HDFS

HDFS是一种允许文件通过网络在多台主机上分享的文件系统,可以让多台机器上的多个用户分享文件和存储空间

3.1 HDFS常见shell操作

hdfs dfs [-cmd] 
  • -ls:查询指定路径信息
  • -put:从本地上传文件
  • -cat:查看HDFS文件内容
  • -get:下载文件到本地
  • -mkdir [-p]:创建文件夹
  • -rm [-r]:删除文件/文件夹

【Hadoop 01】简介,大数据,hadoop,大数据,分布式

3.2 HDFS实操案例

hdfs dfs -ls / | grep / | wc -l

 linux管道

在Linux中,管道(pipe)是一种特殊的机制,用于将一个命令的输出连接到另一个命令的输入。通过使用管道,可以将多个命令组合在一起,以实现更复杂的任务。

管道使用竖线符号(|)表示。它将前一个命令的输出作为后一个命令的输入。例如,下面的命令将列出当前目录中的文件,并将结果通过管道传递给grep命令进行过滤:

 ls | grep keyword

上述命令将列出包含关键字"keyword"的文件。

管道可以连接任意数量的命令。例如,下面的命令将列出当前目录中的文件,并按文件大小进行排序,然后显示前10个最大的文件:

ls -l | sort -nrk 5 | head -n 10

上述命令首先使用ls -l命令列出文件和目录的详细信息,然后将结果通过管道传递给sort命令,按第5列(文件大小)进行逆序排序,最后将结果通过管道传递给head命令,只显示前10行。

通过使用管道,可以将简单的命令组合成更复杂的操作,提高命令行的灵活性和效率。管道是Linux中强大而常用的功能之一。

 ls 指定/目录,grep 搜索 / 目录,wc显示行数

hdfs dfs -ls / | grep / | awk '{print $8,$5}'

| awk '{print $8,$5}': 这部分命令继续使用管道符号将前一个命令的输出传递给awk命令。awk '{print $8,$5}'用于打印每行的第8个字段(文件或目录名)和第5个字段(文件大小)。字段之间用空格分隔。

3.3 HDFS体系结构

  • HDFS支持主从结构,主节点称为NameNode,支持多个;从节点称为DataNode,支持多个
  • HDFS中还包含一个SecondaryNameNode进程

1. NameNode--大老板

  • NameNode是整个文件系统的管理节点
  • 它主要维护着整个文件系统的文件目录树,文件/目录的信息和每个文件对应的数据块列表,并且还负责接收用户的操作请求

2. SecondaryNameNode--秘书

  • 主要负责定期的把edits中的内容合并到fsimage中
  • 这个合并操作称为checkpoint,在合并的时候会对edits中的内容进行转换,生成新的内容保存到fsimage文件中
  • 注意:在NameNode的HA(高可用)架构中没有SecondaryNameNode进程,文件合并操作会由standby NameNode负责实现

3. DataNode--小二

  • 提供真实文件数据的存储服务
  • HDFS会按照固定的大小,顺序对文件进行划分并编号,划分好的每一个块称一个Block,HDFS默认Block大小是128MB
  • HDFS中,如果一个文件小于一个数据块的大小,那么并不会占用整个数据块的存储空间
  • Replication:多副本机制,HDFS默认副本数量为3
  • 通过dfs.replication属性控制

3.4 DataNode总结

注意:Block块存放在哪些DataNode上,只有DataNode自己知道,当集群启动的时候,DataNode会扫描自己节点上面的所有Block块信息,然后把节点和这个节点上的所有Block块信息告诉给NameNode。这个关系是每次重启集群都会动态加载的【这个其实就是集群为什么数据越多,启动越慢的原因】

3.5 NameNode总结

NameNode维护了两份关系:

  • 第一份关系:File与Block list的关系,对应的关系信息存储在fsimage和edits文件中(当NameNode启动的时候会把文件中的元数据信息加载到内存中)
  • 第二份关系:Datanode与Block的关系(当DataNode启动时,会把当前节点上的Block信息和节点信息上报给NameNode)

文件的元数据信息在NameNode里面都会占用150字节的存储空间。

1,fsimage文件其实是hadoop文件系统元数据的一个永久性的检查点,其中包含hadoop文件系统中的所有目录和文件idnode的序列化信息。

2,edits文件存放的是hadoop文件系统的所有更新操作的路径,文件系统客户端执行的所有写操作首先会被记录到edits文件中。

【Hadoop 01】简介,大数据,hadoop,大数据,分布式

3.6 HDFS的回收站

在core-site.xml添加配置

<property>
    <name>fs.trash.interval</name>
    <value>1440</value>
</property>

重启hadoop

stop-all.sh
start-all.sh

忽略回收站删除文件的命令:

  • HDFS为每个用户创建一个回收站目录:/user/用户名/.Trash/
  • 回收站中的数据都会有一个默认保存周期,过期未恢复则会被HDFS自动彻底删除
  • 注意:HDFS的回收站默认是没有开启的,需要修改core-site.xml中的fs.trash.interval属性

 3.7 HDFS的安全模式

  • 集群刚启动时,HDFS会进入安全模式,此时无法执行操作
  • 查看安全模式:hdfs dfsadmin -safemode get
  • 离开安全模式:hdfs dfsadmin -safemode leave

 3.8 案例:定时上传文件到HDFS

案例需求:例如日志文件为access_2020_01_01.log,每天上传到HDFS中
解决思路

  1. 我们需要获取到昨天日志文件的名称
  2. 在HDFS上面使用昨天的日期创建目录
  3. 将昨天的日志文件上传到刚创建的HDFS目录中
  4. 要考虑到脚本重跑,补数据的情况
  5. 配置crontab任务

 3.9 HDFS的高可用(HA)

【Hadoop 01】简介,大数据,hadoop,大数据,分布式

  • HDFS的HA,表示一个集群中存在多个NameNode,只有一个NameNode是处于Active状态,其它的是处于Standby状态
  • Active NameNode(ANN)负责所有客户端的操作,Standby NameNode(SNN)用于同步ANN的状态信息,提供快速故障恢复能力
  • 使用HA的时候,不能启动SecondaryNameNode

 3.10 HDFS的高扩展(Federation)

  • Federation可解决单一命名空间的一些问题,提供以下特性:HDFS集群扩展性、性能更高效、良好的隔离性

4 MapReduce

  • MapReduce是一种分布式计算模型,主要用于搜索领域,解决海量数据的计算问题
  • MapReduce有两个阶段组成:Map和Reduce

【Hadoop 01】简介,大数据,hadoop,大数据,分布式

4.1 Map阶段

  1. 框架会把输入文件(夹)划分为很多InputSplit,默认每个HDFS的Block对应一个InputSplit。通过RecordReader类,把每个InputSplit解析成一个个<k1,v1>。默认每一行数据,会被解析成一个<k1,v1>
  2. 框架调用Mapper类中的map(...)函数,map函数的输入是<k1,v1>,输出是<k2,v2>。一个InputSplit对应一个Map Task
  3. 框架对map函数输出的<k2,v2>进行分区。不同分区中的<k2,v2>由不同的Reduce Task处理,默认只有1个分区
  4. 框架对每个分区中的数据,按照k2进行排序、分组。分组,指的是相同k2的v2分成一个组
  5. 在Map阶段,框架可以执行Combiner操作【可选】
  6. 框架会把Map Task输出的<k2,v2>写入Linux的磁盘文件中

4.2 Redeuce阶段

  1. 框架对多个Map Task的输出,按照不同的分区,通过网络Copy到不同的Reduce节点,这个过程称作Shuffle
  2. 框架对Reduce节点接收到的相同分区的<k2,v2>数据进行合并、排序、分组
  3. 框架调用Reducer类中的reduce方法,输入<k2,{v2...}>,输出<k3,v3>。一个<k2,{v2...}>调用一次reduce函数
  4. 框架把Reduce的输出结果保存到HDFS中

4.3 MapRedeuce任务日志查看

在yarn-site.xml添加配置,开启YARN的日志聚合功能,把散落在NodeManager节点上的日志统一收集管理,方便查看日志

<property> 
    <name>yarn.log-aggregation-enable</name> 
    <value>true</value>
</property>
<property>
    <name>yarn.log.server.url</name>
    <value>http://bigdata01:19888/jobhistory/logs/</value>
</property>

重启Hadoop,并启动HistoryServer

stop-all.sh
start-all.sh
mapred --daemon start historyserver

使用命令查看任务执行的日志:这里的id不一定,可以通过 hadoop job -list 来看看是否有任务

yarn logs -applicationId application_158771356

停止yarn任务:

yarn application -kill application_15877135678

4.4 Shuffle原理

【Hadoop 01】简介,大数据,hadoop,大数据,分布式

  1. 在Map阶段中,通过InputSplit过程产生一个Map任务,该任务在执行的时候会把 <k1,v1>转化为<k2,v2>,这些数据会先临时存储到一个内存缓冲区中,这个内存缓冲区的大小默认是100M(io.sort.mb属性),
  2. 当达到内存缓冲区大小的80%(io.sort.spill.percent)即80M时,会把内 存中的数据溢写到本地磁盘中(mapred.local.dir),直到Map把所有的数据都计算完
  3. 最后会把内存缓冲区中的数据一次性全部刷新到本地磁盘文件上
  4. 数据会被shuffle线程分别拷贝到不同的reduce节点,不同Map任务中的相同分区的数据会在同一个reduce节点进行合并,合并以后会执行reduce的功能,最终产生结果数据。

:shuffle其实是横跨Map端和Reduce端,主要是负责把Map端产生的数据通过网络拷贝到Reduce阶段进行统一聚合计算。

4.5 Shuffle原理

  • 序列化:将内存中的对象信息转成二进制的形式,方便存储到文件中
  • Hadoop实现了自己的序列化和反序列化机制,单独设计了一些writable的实现,例如LongwritableText

特点:文章来源地址https://www.toymoban.com/news/detail-568774.html

  1. 紧凑:高效使用存储空间
  2. 快速:读写数据的额外开销小
  3. 可扩展:可透明地读取老格式的数据
  4. 互操作:支持多语言的交互

4.6 InputSplit原理

  • 当文件剩余大小bytesRemaining与splitSize的比值大于1.1的时候,就继续切分,否则,剩下的直接作为一个InputSize(即当bytesRemaining/splitSize <= 1.1时,会停止划分,将剩下的作为一个InputSplit)
  • 把不支持切割的文件作为一个InputSplit,比如压缩文件

4.7 RecodReader原理

  • 每一个InputSplit都有一个RecordReader,作用是把InputSplit中的数据解析成Record,即<k1,v1>
  • 如果这个InputSplit不是第一个InputSplit,将会丢掉读取出来的第一行,因为总是通过next()方法多读取一行(会多读取下一个InputSplit的第一行)

到了这里,关于【Hadoop 01】简介的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 大数据之Hadoop分布式数据仓库HBase

    HBase 是一个构建在 Hadoop 文件系统之上的面向列的数据库管理系统。 要想明白为什么产生 HBase,就需要先了解一下 Hadoop 存在的限制?Hadoop 可以通过 HDFS 来存储结构化、半结构甚至非结构化的数据,它是传统数据库的补充,是海量数据存储的最佳方法,它针对大文件的存储,

    2024年02月02日
    浏览(56)
  • 大数据学习02-Hadoop分布式集群部署

    操作系统:centos7 软件环境:jdk8、hadoop-2.8.5 1.下载VMware,建议支持正版 2.安装到Widows目录下任意位置即可,安装目录自定义。打开VMware,界面如下: 3.创建虚拟机 创建虚拟机—选择自定义 这一步按照默认的配置就好 选择系统,安装程序光盘映像文件iso,这里需要下载cenos镜像

    2024年02月16日
    浏览(63)
  • 《Hadoop大数据技术》实验报告(1)Hadoop的伪分布式安装和配置

    《Hadoop大数据技术》实验报告(1) 班级 学号 姓名 Hadoop的伪分布式安装和配置 一、实验目的 1、理解Hadoop伪分布式的安装过程; 2、学会JDK的安装和SSH免密码配置; 3、学会Hadoop的伪分布式安装和配置。 二、实验内容 在linux平台中安装Hadoop,包括JDK安装、SSH免密码配置和伪分

    2023年04月23日
    浏览(67)
  • 大数据 | 实验零:安装 Hadoop 伪分布式系统

    👀 前言 :本篇是个人配置环境的总结,基于指导书,补充了许多在配置过程中出现的问题的解决细节。希望能帮到你😄。 Vmware workstation pro 16 Ubuntu 20.04 JDK 1.8 Hadoop 3.2.2 下边资源是本篇博客会用到的相关文件 (建议直接下载,相关代码直接对应的下述文件, 下载完先不要动

    2023年04月17日
    浏览(49)
  • 大数据Hadoop完全分布式及心得体会

    Hadoop是一个 分布式系统 基础技术框架,利用hadoop,开发用户可以在不了解分布式底层细节的情况下,开发分布式程序,从而达到充分利用集群的威力高速运算和存储的目的;而在本学期中,我们的专业老师带我们学习了Hadoop框架中最 核心 的设计: MapReduce 和 HDFS 。 MapReduc

    2024年02月08日
    浏览(47)
  • (大数据开发随笔9)Hadoop 3.3.x分布式环境部署——全分布式模式

    分布式文件系统中,HDFS相关的守护进程也分布在不同的机器上,如: NameNode守护进程,尽可能单独部署在一台硬件性能较好的机器中 其他的每台机器上都会部署一个DataNode进程,一般的硬件环境即可 SecondaryNameNode守护进程最好不要和NameNode在同一台机器上 守护进程布局 Name

    2023年04月16日
    浏览(60)
  • hadoop完全分布式集群搭建(超详细)-大数据集群搭建

    本次搭建完全分布式集群用到的环境有: jdk1.8.0 hadoop-2.7.7 本次搭建集群所需环境也给大家准备了,下载链接地址:https://share.weiyun.com/dk7WgaVk 密码:553ubk 本次完全分布式集群搭建需要提前建立好三台虚拟机,我分别把它们的主机名命名为:master,slave1,slave2 一.配置免密登陆 首先

    2024年02月10日
    浏览(52)
  • 分布式计算 第五章 大数据多机计算:Hadoop

    5.2.1 从硬件思考大数据 从硬件角度看,一台或是几台机器似乎难以胜任大数据的存储和计算工作。 • 大量机器的集群构成数据中心 • 使用高速互联网络对大量机器进行连接以确保数据传递 • 综合考量数据中心的散热问题、能耗问题,以及各方面成本 • 集群中硬件发生故

    2024年02月05日
    浏览(52)
  • 大数据内容分享(九):Hadoop-生产集群搭建(完全分布式)

    目录 Hadoop运行模式——完全分布式 1、准备3台虚拟机(关闭防火墙、配置静态IP 和 主机名称) 2、安装JDK 和 Hadoop 并配置JDK和Hadoop的环境变量 3、配置完全分布式集群 4、集群配置 1)集群部署规划 2)配置文件说明 3)配置集群 5、集群启动 与 测试 1)workers的配置 2)启动集

    2024年02月21日
    浏览(100)
  • 大数据开发·关于虚拟机Hadoop完全分布式集群搭建教程

    官网链接 进入后网站如图,各位按需下载 官网链接 进入页面点击下载 再根据我们需要下载的软件进入下载页面 点击右侧红框内的免费授权页面获取免费许可 进入后如图,两者我们都需要所以都勾选,填写的邮箱用于接收下载链接,下载后进行安装即可 这里先和大家强调一

    2024年02月07日
    浏览(47)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包