【使用机器学习和深度学习对城市声音进行分类】基于两种技术(ML和DL)对音频数据(城市声音)进行分类(Matlab代码实现)

这篇具有很好参考价值的文章主要介绍了【使用机器学习和深度学习对城市声音进行分类】基于两种技术(ML和DL)对音频数据(城市声音)进行分类(Matlab代码实现)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

2.1 算例1

2.2 算例2

2.3 算例3

2.4 算例4

2.5 算例5

2.6 算例6

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

使用机器学习和深度学习对城市声音进行分类是一个有趣的研究课题。下面是一种基本的方法,结合了机器学习(ML)和深度学习(DL)技术:

1. 数据收集和预处理:收集大量城市声音的音频数据集。可以使用麦克风或其他录音设备在不同城市环境下进行采集。确保采集到的音频数据有足够的多样性和代表性。对音频数据进行预处理,如音频剪辑、采样率调整、去噪等。

2. 特征提取:从音频数据中提取有代表性的特征向量。可以使用机器学习常见的音频特征提取方法,如Mel频谱系数(MFCC)、音频能量、过零率等。这些特征可以帮助机器学习和深度学习模型发现城市声音的区别和模式。

3. 机器学习分类:使用机器学习算法对提取的音频特征进行分类。选择适合音频分类的机器学习算法,如支持向量机(SVM)、随机森林(Random Forest)或K最近邻(K-Nearest Neighbors)等。使用预处理的音频数据和特征向量训练机器学习模型,并对其进行评估和优化。

4. 深度学习分类:构建深度学习模型进行城市声音分类。使用深度学习算法,如卷积神经网络(CNN)或循环神经网络(RNN)构建分类模型。使用音频数据的原始波形或经过预处理的特征作为输入,训练深度学习模型并进行模型优化。

5. 模型评估和比较:使用预留的测试集评估机器学习和深度学习模型的性能。比较两种技术在城市声音分类任务上的准确率、召回率、精确率等指标。根据评估结果选择更有效的模型。

6. 可解释性分析:对分类结果进行可解释性分析。了解哪些特征对城市声音的分类起到重要作用,或者使用可解释性方法(如Grad-CAM)来查看深度学习模型对城市声音的决策过程。

7. 模型优化和改进:根据分析结果和实际需求,对机器学习和深度学习模型进行优化和改进。可以尝试使用更复杂的模型架构、调整超参数或增加数据样本等来提高模型的性能。

通过上述方法,可以使用机器学习和深度学习技术对城市声音进行分类。机器学习方法适用于特征提取和分类,而深度学习方法可以直接处理原始音频数据,从而更好地捕捉城市声音的特征和模式。结合两种技术可以提高分类的准确性和效果,对于城市环境监测、噪音控制等方面具有实际应用价值。

该数据集包含来自 8732 个类的 4 个城市声音摘录(<=10 秒),它们是:

空调
汽车喇叭
儿童玩耍
狗吠
钻井
引擎 怠速
枪射击
手提钻
警笛
街头音乐

随附的元数据包含每个声音摘录的唯一 ID 及其给定的类名。随附的 git 存储库中包含此数据集的示例,可以从此处下载完整数据集。

此示例中有 7 个算例:

算例 1:示例简介,探索和可视化数据

算例 2:使用诊断应用程序设计器对数据
进行预处理和提取功能(信号时域特征和频谱特征)
算例 3:模型训练和评估
算例 4:模型部署
算例 5:使用 MFCC 提取特征来训练机器学习模型
算例 6:使用小波分析和深度学习对城市声音进行分类

亮点 :
为音频数据存储
准备现实数据 标准化和规范化数字信号数据(采样率、位深度、通道数) 使用不同的方法提取特征(时域信号特征和频谱特征,MFCC,离散小波变换,Haar 1D小波变换)

📚2 运行结果

2.1 算例1

figure()
datafolder = "UrbanSound8K/structure1";
currentfolder = pwd;
cd(datafolder);
listdir=dir;  
for i=3:1:length(listdir)
    cd(listdir(i).name)
    inside=dir;
    subplot(3,4,i-2);
    [y,fs]=audioread(inside(4).name);
    plot(y(:,:)); 
    soundsc(y(:,:),fs);
    grid on;
    title(listdir(i).name)
    drawnow;
    pause(2)
    cd(strcat(currentfolder,'\',datafolder));
end

【使用机器学习和深度学习对城市声音进行分类】基于两种技术(ML和DL)对音频数据(城市声音)进行分类(Matlab代码实现),机器学习,深度学习,分类

【使用机器学习和深度学习对城市声音进行分类】基于两种技术(ML和DL)对音频数据(城市声音)进行分类(Matlab代码实现),机器学习,深度学习,分类

【使用机器学习和深度学习对城市声音进行分类】基于两种技术(ML和DL)对音频数据(城市声音)进行分类(Matlab代码实现),机器学习,深度学习,分类

2.2 算例2

figure()
datafolder = "UrbanSound8K/structure";
currentfolder = pwd;
cd(datafolder);
listdir=dir;  
for i=3:1:length(listdir)
    cd(listdir(i).name)
    inside=dir;
    subplot(3,4,i-2);
    [y,fs]=audioread(inside(randi([4,100])).name);
    plot(y(:,:)); 
    soundsc(y(:,:),fs);
    grid on;
    title(listdir(i).name)
    drawnow;
    pause(2)
    cd(strcat(currentfolder,'\',datafolder));
end

【使用机器学习和深度学习对城市声音进行分类】基于两种技术(ML和DL)对音频数据(城市声音)进行分类(Matlab代码实现),机器学习,深度学习,分类

【使用机器学习和深度学习对城市声音进行分类】基于两种技术(ML和DL)对音频数据(城市声音)进行分类(Matlab代码实现),机器学习,深度学习,分类

【使用机器学习和深度学习对城市声音进行分类】基于两种技术(ML和DL)对音频数据(城市声音)进行分类(Matlab代码实现),机器学习,深度学习,分类

2.3 算例3

【使用机器学习和深度学习对城市声音进行分类】基于两种技术(ML和DL)对音频数据(城市声音)进行分类(Matlab代码实现),机器学习,深度学习,分类

【使用机器学习和深度学习对城市声音进行分类】基于两种技术(ML和DL)对音频数据(城市声音)进行分类(Matlab代码实现),机器学习,深度学习,分类 【使用机器学习和深度学习对城市声音进行分类】基于两种技术(ML和DL)对音频数据(城市声音)进行分类(Matlab代码实现),机器学习,深度学习,分类

2.4 算例4

【使用机器学习和深度学习对城市声音进行分类】基于两种技术(ML和DL)对音频数据(城市声音)进行分类(Matlab代码实现),机器学习,深度学习,分类

2.5 算例5

figure()
datafolder = "UrbanSound8K/structure";
currentfolder = pwd;
cd(datafolder);
listdir=dir;  
for i=3:1:length(listdir)
    cd(listdir(i).name)
    inside=dir;
    subplot(3,4,i-2);
    [y,fs]=audioread(inside(4).name);
    plot(y(:,:)); 
    soundsc(y(:,:),fs);
    grid on;
    title(listdir(i).name)
    drawnow;
    pause(5)
    cd(strcat(currentfolder,'\',datafolder));
end

【使用机器学习和深度学习对城市声音进行分类】基于两种技术(ML和DL)对音频数据(城市声音)进行分类(Matlab代码实现),机器学习,深度学习,分类

【使用机器学习和深度学习对城市声音进行分类】基于两种技术(ML和DL)对音频数据(城市声音)进行分类(Matlab代码实现),机器学习,深度学习,分类 【使用机器学习和深度学习对城市声音进行分类】基于两种技术(ML和DL)对音频数据(城市声音)进行分类(Matlab代码实现),机器学习,深度学习,分类

【使用机器学习和深度学习对城市声音进行分类】基于两种技术(ML和DL)对音频数据(城市声音)进行分类(Matlab代码实现),机器学习,深度学习,分类

【使用机器学习和深度学习对城市声音进行分类】基于两种技术(ML和DL)对音频数据(城市声音)进行分类(Matlab代码实现),机器学习,深度学习,分类

【使用机器学习和深度学习对城市声音进行分类】基于两种技术(ML和DL)对音频数据(城市声音)进行分类(Matlab代码实现),机器学习,深度学习,分类

2.6 算例6

【使用机器学习和深度学习对城市声音进行分类】基于两种技术(ML和DL)对音频数据(城市声音)进行分类(Matlab代码实现),机器学习,深度学习,分类

【使用机器学习和深度学习对城市声音进行分类】基于两种技术(ML和DL)对音频数据(城市声音)进行分类(Matlab代码实现),机器学习,深度学习,分类

【使用机器学习和深度学习对城市声音进行分类】基于两种技术(ML和DL)对音频数据(城市声音)进行分类(Matlab代码实现),机器学习,深度学习,分类

【使用机器学习和深度学习对城市声音进行分类】基于两种技术(ML和DL)对音频数据(城市声音)进行分类(Matlab代码实现),机器学习,深度学习,分类

【使用机器学习和深度学习对城市声音进行分类】基于两种技术(ML和DL)对音频数据(城市声音)进行分类(Matlab代码实现),机器学习,深度学习,分类

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]HP ProLiant ML和DL服务器选用QLogic的第三代CNA产品[J].计算机与网络,2011,37(Z1):127.

[2]Kevin Chng (2023). Classify Urban Sound using Machine Learning & Deep Learning

[3]崔琳. 音频标记深度神经网络模型研究[D].燕山大学,2020.DOI:10.27440/d.cnki.gysdu.2020.001881.文章来源地址https://www.toymoban.com/news/detail-569032.html

🌈4 Matlab代码实现

到了这里,关于【使用机器学习和深度学习对城市声音进行分类】基于两种技术(ML和DL)对音频数据(城市声音)进行分类(Matlab代码实现)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 机器学习笔记 - 基于keras + 小型Xception网络进行图像分类

            Xception 是深度为 71 层的卷积神经网络,仅依赖于深度可分离的卷积层。         论文中将卷积神经网络中的 Inception 模块解释为常规卷积和深度可分离卷积运算(深度卷积后跟点卷积)之间的中间步骤。从这个角度来看,深度可分离卷积可以理解为具有最大数

    2024年02月11日
    浏览(32)
  • 深度学习使用Keras进行多分类

    之前的文章介绍了使用Keras解决二分类问题。那么对于多分类问题该怎么解决?本文介绍利用深度学习----Keras进行多分类。 为了演示,本次选用了博文keras系列︱图像多分类训练与利用bottleneck features进行微调(三)中提到的数据集,原始的数据集将所有类别的train照片放到t

    2024年02月07日
    浏览(39)
  • 机器学习与深度学习——通过knn算法分类鸢尾花数据集iris求出错误率并进行可视化

    什么是knn算法? KNN算法是一种基于实例的机器学习算法,其全称为K-最近邻算法(K-Nearest Neighbors Algorithm)。它是一种简单但非常有效的分类和回归算法。 该算法的基本思想是:对于一个新的输入样本,通过计算它与训练集中所有样本的距离,找到与它距离最近的K个训练集样

    2024年02月03日
    浏览(41)
  • 机器学习笔记 - 基于Scikit-Learn的各种分类器进行分类并比较

            scikit-learn是基于python语言构建机器学习应用程序的最佳库之一。简单易用,并且它有很多示例和教程。除了监督式机器学习(分类和回归)外,它还可用于聚类、降维、特征提取和工程以及数据预处理。该接口在所有这些方法上都是一致的,因此它不仅易于使用,

    2024年02月09日
    浏览(62)
  • 机器学习实战:Python基于Logistic逻辑回归进行分类预测(一)

    1.1 Logistic回归的介绍 逻辑回归( Logistic regression ,简称 LR )是一种经典的二分类算法,它将输入特征与一个sigmoid函数进行线性组合,从而预测输出标签的概率。该算法常被用于预测离散的二元结果,例如是/否、真/假等。 优点: 实现简单。Logistic回归的参数可以用极大似然

    2024年02月08日
    浏览(42)
  • 机器学习笔记 - 基于自定义数据集 + 3D CNN进行视频分类

            这里主要介绍了基于自定义动作识别数据集训练用于视频分类的 3D 卷积神经网络 (CNN) 。3D CNN 使用三维滤波器来执行卷积。内核能够在三个方向上滑动,而在 2D CNN 中它可以在二维上滑动。         这里的模型主要基于D. Tran 等人2017年的论文“动作识别的时空卷积研

    2024年01月23日
    浏览(49)
  • 机器学习实战:Python基于DT决策树模型进行分类预测(六)

    1.1 决策树的介绍 决策树(Decision Tree,DT)是一种类似流程图的树形结构,其中内部节点表示特征或属性,分支表示决策规则,每个叶节点表示结果。在决策树中,最上方的节点称为根节点。它学习基于属性值进行分区。它以递归方式进行分区,称为递归分区。这种类似流程

    2023年04月27日
    浏览(61)
  • 深度学习实战(11):使用多层感知器分类器对手写数字进行分类

    1.1 什么是多层感知器(MLP)? MLP 是一种监督机器学习 (ML) 算法,属于前馈人工神经网络 [1] 类。该算法本质上是在数据上进行训练以学习函数。给定一组特征和一个目标变量(例如标签),它会学习一个用于分类或回归的非线性函数。在本文中,我们将只关注分类案例。

    2024年02月03日
    浏览(52)
  • PyTorch深度学习实战 | 基于线性回归、决策树和SVM进行鸢尾花分类

    鸢尾花数据集是机器学习领域非常经典的一个分类任务数据集。它的英文名称为Iris Data Set,使用sklearn库可以直接下载并导入该数据集。数据集总共包含150行数据,每一行数据由4个特征值及一个标签组成。标签为三种不同类别的鸢尾花,分别为:Iris Setosa,Iris Versicolour,Iri

    2023年04月10日
    浏览(43)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包