PCL 泊松曲面重建法(多线程加速版)

这篇具有很好参考价值的文章主要介绍了PCL 泊松曲面重建法(多线程加速版)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、算法原理

1、算法概述

  PCL中常用的泊松曲面重建法由于运算复杂度高,算法效率低。在实际应用中受到较大的限制。为了改变这一现状,PCL1.13.0版本中对该算法进行了优化,在原有算法的基础上添加了多线程并行。文章来源地址https://www.toymoban.com/news/detail-569393.html

2、主要函数

template <typename PointNT> void
pcl::Poisson<PointNT

到了这里,关于PCL 泊松曲面重建法(多线程加速版)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • PCL 二维凸包算法(Jarvis算法)

    给定平面上的一组点,集合的凸包是包含集合所有点的最小凸多边形。Jarvis算法的思想很简单,即从最左边的点(或x坐标值最小的点)开始,并沿着逆时针方向包裹点。具体的算法计算过程如下所示: 初始化 p p p 为最左边的点。 遍历所有点,沿逆时针方向找到下一个边缘点

    2024年02月16日
    浏览(37)
  • PCL中点云分割算法简析

    点云分割算法广泛应用于激光遥感、无人驾驶、工业自动化领域,其原理是根据空间、几何和纹理等特征对点云进行划分,使同一划分内的点云拥有类似的特征。 点云分割算法经过长时间的发展,目前大致可以分为基于随机采样一致的分割算法、基于聚类的分割算法和基于点

    2024年02月03日
    浏览(38)
  • 点云分割-pcl区域生长算法

    1、本文内容 pcl的区域生长算法的使用和原理 2、平台/环境 cmake, pcl 3、转载请注明出处: https://blog.csdn.net/qq_41102371/article/details/131927376 参考:https://pcl.readthedocs.io/projects/tutorials/en/master/region_growing_segmentation.html#region-growing-segmentation https://blog.csdn.net/taifyang/article/details/124097186

    2024年02月15日
    浏览(42)
  • PCL 耳切三角剖分算法

      简单多边形的耳朵,是指由连续顶点 V 0 V_0 V

    2024年02月10日
    浏览(41)
  • PCL 改进点云双边滤波算法

    我们先来回顾一下之前该算法的计算过程,在二维图像领域中,双边滤波算法是通过考虑中心像素点到邻域像素点的距离(一边)以及像素亮度差值所确定的权重(另一边)来修正当前采样中心点的位置,从而达到平滑滤波效果。同时也会有选择性的剔除部分与当前采样点“差异”

    2024年02月07日
    浏览(42)
  • PCL 使用LCCP算法进行点云分割

      LCCP是Locally Convex Connected Patches的缩写,算法大致可以分成两个部分: 基于超体聚类的过分割。 在超体聚类的基础上再聚类。 /

    2024年02月12日
    浏览(51)
  • 基于PCL的RANSAC(随机采样一致)算法简介与示例

    RANSAC(Random sample consensus,随机采样一致)是3D点云拟合的一种重要的手段,可以对直线、圆、平面,圆球、圆柱等形状的点云进行拟合,其优点在于可以最大程度上减少噪声点对拟合效果的影响。 RANSAC各种类型拟合的计算原理基本类似。 1,进行随机抽样,如直线,就随机找

    2024年02月02日
    浏览(49)
  • 【PCL】—— 点云配准ICP(Iterative Closest Point)算法

    ​     由于三维扫描仪设备受到测量方式和被测物体形状的条件限制,一次扫描往往只能获取到局部的点云信息,进而需要进行多次扫描,然后每次扫描时得到的点云都有独立的坐标系,不可以直接进行拼接。在逆向工程、计算机视觉、文物数字化等领域中,由于点云的

    2024年02月13日
    浏览(52)
  • (学习笔记)PCL点云库的基本使用

    目录 前言 1、理解点云库 1.1、不同的点云类型 1.2、PCL中的算法 1.3、ROS的PCL接口 2、创建第一个PCL程序 2.1、创建点云 2.2、加载点云文件 2.3、创建点云文件 2.4、点云可视化 2.5、点云滤波和下采样 2.5.1、点云滤波  2.5.2、点云下采样 2.6、点云配准与匹配         点云是一种

    2023年04月08日
    浏览(31)
  • Ubuntu 20.04.06 PCL C++学习记录(十九)

    @[TOC]PCL中点云分割模块的学习 参考书籍:《点云库PCL从入门到精通》以及官方代码PCL官方代码链接,,PCL版本为1.10.0,CMake版本为3.16 源代码 CMakeLists.txt 运行结果 函数 pcl::RegionGrowing 是 PCL 库中提供的一种区域生长分割算法,它根据点云的几何特征(如法向量、曲率等)将点云

    2024年04月16日
    浏览(52)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包